本文整理匯總了Java中org.apache.flink.streaming.api.datastream.DataStream.print方法的典型用法代碼示例。如果您正苦於以下問題:Java DataStream.print方法的具體用法?Java DataStream.print怎麽用?Java DataStream.print使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.flink.streaming.api.datastream.DataStream
的用法示例。
在下文中一共展示了DataStream.print方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: main
import org.apache.flink.streaming.api.datastream.DataStream; //導入方法依賴的package包/類
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironment();
Properties properties = new Properties();
properties.load(new FileInputStream("src/main/resources/application.properties"));
Properties mqttProperties = new Properties();
// client id = a:<Organization_ID>:<App_Id>
mqttProperties.setProperty(MQTTSource.CLIENT_ID,
String.format("a:%s:%s",
properties.getProperty("Org_ID"),
properties.getProperty("App_Id")));
// mqtt server url = tcp://<Org_ID>.messaging.internetofthings.ibmcloud.com:1883
mqttProperties.setProperty(MQTTSource.URL,
String.format("tcp://%s.messaging.internetofthings.ibmcloud.com:1883",
properties.getProperty("Org_ID")));
// topic = iot-2/type/<Device_Type>/id/<Device_ID>/evt/<Event_Id>/fmt/json
mqttProperties.setProperty(MQTTSource.TOPIC,
String.format("iot-2/type/%s/id/%s/evt/%s/fmt/json",
properties.getProperty("Device_Type"),
properties.getProperty("Device_ID"),
properties.getProperty("EVENT_ID")));
mqttProperties.setProperty(MQTTSource.USERNAME, properties.getProperty("API_Key"));
mqttProperties.setProperty(MQTTSource.PASSWORD, properties.getProperty("APP_Authentication_Token"));
MQTTSource mqttSource = new MQTTSource(mqttProperties);
DataStreamSource<String> tempratureDataSource = env.addSource(mqttSource);
DataStream<String> stream = tempratureDataSource.map((MapFunction<String, String>) s -> s);
stream.print();
env.execute("Temperature Analysis");
}
示例2: main
import org.apache.flink.streaming.api.datastream.DataStream; //導入方法依賴的package包/類
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("group.id", "test");
DataStream<TemperatureEvent> inputEventStream = env.addSource(
new FlinkKafkaConsumer09<TemperatureEvent>("test", new EventDeserializationSchema(), properties));
Pattern<TemperatureEvent, ?> warningPattern = Pattern.<TemperatureEvent> begin("first")
.subtype(TemperatureEvent.class).where(new FilterFunction<TemperatureEvent>() {
private static final long serialVersionUID = 1L;
public boolean filter(TemperatureEvent value) {
if (value.getTemperature() >= 26.0) {
return true;
}
return false;
}
}).within(Time.seconds(10));
DataStream<Alert> patternStream = CEP.pattern(inputEventStream, warningPattern)
.select(new PatternSelectFunction<TemperatureEvent, Alert>() {
private static final long serialVersionUID = 1L;
public Alert select(Map<String, TemperatureEvent> event) throws Exception {
return new Alert("Temperature Rise Detected:" + event.get("first").getTemperature()
+ " on machine name:" + event.get("first").getMachineName());
}
});
patternStream.print();
env.execute("CEP on Temperature Sensor");
}
示例3: main
import org.apache.flink.streaming.api.datastream.DataStream; //導入方法依賴的package包/類
public static void main(String[] args) throws Exception {
ParameterTool pt = ParameterTool.fromArgs(args);
StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment();
see.setParallelism(1);
Properties kinesisConsumerConfig = new Properties();
kinesisConsumerConfig.setProperty(ConsumerConfigConstants.AWS_REGION, pt.getRequired("region"));
kinesisConsumerConfig.setProperty(ConsumerConfigConstants.AWS_ACCESS_KEY_ID, pt.getRequired("accesskey"));
kinesisConsumerConfig.setProperty(ConsumerConfigConstants.AWS_SECRET_ACCESS_KEY, pt.getRequired("secretkey"));
DataStream<String> kinesis = see.addSource(new FlinkKinesisConsumer<>(
"flink-test",
new SimpleStringSchema(),
kinesisConsumerConfig));
kinesis.print();
see.execute();
}
示例4: main
import org.apache.flink.streaming.api.datastream.DataStream; //導入方法依賴的package包/類
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
SiteToSiteClientConfig clientConfig = new SiteToSiteClient.Builder()
.url("http://localhost:8080/nifi")
.portName("Data for Flink")
.requestBatchCount(5)
.buildConfig();
SourceFunction<NiFiDataPacket> nifiSource = new NiFiSource(clientConfig);
DataStream<NiFiDataPacket> streamSource = env.addSource(nifiSource).setParallelism(2);
DataStream<String> dataStream = streamSource.map(new MapFunction<NiFiDataPacket, String>() {
@Override
public String map(NiFiDataPacket value) throws Exception {
return new String(value.getContent(), Charset.defaultCharset());
}
});
dataStream.print();
env.execute();
}
示例5: main
import org.apache.flink.streaming.api.datastream.DataStream; //導入方法依賴的package包/類
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<TemperatureEvent> inputEventStream = env.fromElements(new TemperatureEvent("xyz", 22.0),
new TemperatureEvent("xyz", 20.1), new TemperatureEvent("xyz", 21.1), new TemperatureEvent("xyz", 22.2),
new TemperatureEvent("xyz", 29.1), new TemperatureEvent("xyz", 22.3), new TemperatureEvent("xyz", 22.1),
new TemperatureEvent("xyz", 22.4), new TemperatureEvent("xyz", 22.7),
new TemperatureEvent("xyz", 27.0));
Pattern<TemperatureEvent, ?> warningPattern = Pattern.<TemperatureEvent> begin("first")
.subtype(TemperatureEvent.class).where(new FilterFunction<TemperatureEvent>() {
private static final long serialVersionUID = 1L;
public boolean filter(TemperatureEvent value) {
if (value.getTemperature() >= 26.0) {
return true;
}
return false;
}
}).within(Time.seconds(10));
DataStream<Alert> patternStream = CEP.pattern(inputEventStream, warningPattern)
.select(new PatternSelectFunction<TemperatureEvent, Alert>() {
private static final long serialVersionUID = 1L;
public Alert select(Map<String, TemperatureEvent> event) throws Exception {
return new Alert("Temperature Rise Detected");
}
});
patternStream.print();
env.execute("CEP on Temperature Sensor");
}
示例6: main
import org.apache.flink.streaming.api.datastream.DataStream; //導入方法依賴的package包/類
public static void main(String[] args) throws Exception {
if (args.length != 2){
System.err.println("USAGE:\nSocketTextStreamWordCount <hostname> <port>");
return;
}
String hostName = args[0];
Integer port = Integer.parseInt(args[1]);
// set up the execution environment
final StreamExecutionEnvironment env = StreamExecutionEnvironment
.getExecutionEnvironment();
// get input data
DataStream<String> text = env.socketTextStream(hostName, port);
DataStream<Tuple2<String, Integer>> counts =
// split up the lines in pairs (2-tuples) containing: (word,1)
text.flatMap(new LineSplitter())
// group by the tuple field "0" and sum up tuple field "1"
.keyBy(0)
.sum(1);
counts.print();
// execute program
env.execute("Java WordCount from SocketTextStream Example");
}
示例7: main
import org.apache.flink.streaming.api.datastream.DataStream; //導入方法依賴的package包/類
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// get CLI parameters
ParameterTool parameters = ParameterTool.fromArgs(args);
String topic = parameters.getRequired("topic");
String groupId = parameters.get("group-id", "flink-kafka-consumer");
String propertiesFile = parameters.getRequired("env");
ParameterTool envProperties = ParameterTool.fromPropertiesFile(propertiesFile);
String schemaRegistryUrl = envProperties.getRequired("registry_url");
String bootstrapServers = envProperties.getRequired("brokers");
String zookeeperConnect = envProperties.getRequired("zookeeper");
// setup Kafka sink
ConfluentAvroDeserializationSchema deserSchema = new ConfluentAvroDeserializationSchema(schemaRegistryUrl);
Properties kafkaProps = new Properties();
kafkaProps.setProperty("bootstrap.servers", bootstrapServers);
kafkaProps.setProperty("zookeeper.connect", zookeeperConnect);
kafkaProps.setProperty("group.id", groupId);
FlinkKafkaConsumer08<String> flinkKafkaConsumer = new FlinkKafkaConsumer08<String>(topic, deserSchema, kafkaProps);
DataStream<String> kafkaStream = env.addSource(flinkKafkaConsumer);
DataStream<Integer> counts = kafkaStream
.map(new MapFunction<String, Integer>() {
public Integer map(String s) throws Exception {
return 1;
}
})
.timeWindowAll(Time.seconds(3))
.sum(0);
counts.print();
env.execute("Flink Kafka Java Example");
}
示例8: main
import org.apache.flink.streaming.api.datastream.DataStream; //導入方法依賴的package包/類
public static void main(final String[] args) throws Exception {
if (!parseParameters(args)) {
return;
}
// set up the execution environment
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// get input data
final DataStream<Sentence> text = getTextDataStream(env);
final DataStream<Tuple2<String, Integer>> counts = text
// split up the lines in pairs (2-tuples) containing: (word,1)
// this is done by a bolt that is wrapped accordingly
.transform("BoltTokenizerPojo",
TypeExtractor.getForObject(new Tuple2<String, Integer>("", 0)),
new BoltWrapper<Sentence, Tuple2<String, Integer>>(new BoltTokenizerByName()))
// group by the tuple field "0" and sum up tuple field "1"
.keyBy(0).sum(1);
// emit result
if (fileOutput) {
counts.writeAsText(outputPath);
} else {
counts.print();
}
// execute program
env.execute("Streaming WordCount with POJO bolt tokenizer");
}
示例9: main
import org.apache.flink.streaming.api.datastream.DataStream; //導入方法依賴的package包/類
public static void main(final String[] args) throws Exception {
if (!parseParameters(args)) {
return;
}
// set up the execution environment
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// get input data
final DataStream<Tuple1<String>> text = getTextDataStream(env);
final DataStream<Tuple2<String, Integer>> counts = text
// split up the lines in pairs (2-tuples) containing: (word,1)
// this is done by a Storm bolt that is wrapped accordingly
.transform(
"BoltTokenizerWithNames",
TypeExtractor.getForObject(new Tuple2<String, Integer>("", 0)),
new BoltWrapper<Tuple1<String>, Tuple2<String, Integer>>(
new BoltTokenizerByName(), new Fields("sentence")))
// group by the tuple field "0" and sum up tuple field "1"
.keyBy(0).sum(1);
// emit result
if (fileOutput) {
counts.writeAsText(outputPath);
} else {
counts.print();
}
// execute program
env.execute("Streaming WordCount with schema bolt tokenizer");
}
示例10: main
import org.apache.flink.streaming.api.datastream.DataStream; //導入方法依賴的package包/類
public static void main(String[] args) throws Exception {
// Checking input parameters
final ParameterTool params = ParameterTool.fromArgs(args);
// set up the execution environment
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// make parameters available in the web interface
env.getConfig().setGlobalJobParameters(params);
// get input data
DataStream<String> text;
if (params.has("input")) {
// read the text file from given input path
text = env.readTextFile(params.get("input"));
} else {
System.out.println("Executing WordCount example with default input data set.");
System.out.println("Use --input to specify file input.");
// get default test text data
text = env.fromElements(WordCountData.WORDS);
}
DataStream<Tuple2<String, Integer>> counts =
// split up the lines in pairs (2-tuples) containing: (word,1)
text.flatMap(new Tokenizer())
// group by the tuple field "0" and sum up tuple field "1"
.keyBy(0).sum(1);
// emit result
if (params.has("output")) {
counts.writeAsText(params.get("output"));
} else {
System.out.println("Printing result to stdout. Use --output to specify output path.");
counts.print();
}
// execute program
env.execute("Streaming WordCount");
}
示例11: main
import org.apache.flink.streaming.api.datastream.DataStream; //導入方法依賴的package包/類
public static void main(String[] args) throws Exception {
// set up the execution environment
final StreamExecutionEnvironment env
= StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime);
// generate stream data will become anomalous after 100000 milli seconds
DataStream<Tuple3<String, Long,Double>> inStream
= env.addSource(new PoissonFrequencyGenerator1(10000));
// Choose and a History defining what the latest window will be compared to. In this case each new window will be compared to the aggregation of the last two windows.
History hist
= new HistoryTrailing(2);
// Choose a distribution the value is supposed to follow and initialize it with a history.
PoissonFreqAnomaly<String,Tuple3<String,Long,Double>> anomalyDetector
= new PoissonFreqAnomaly<>(hist);
// feed the stream into the model and get back a stream of AnomalyResults. For details see the different internal classes defined below.
DataStream<Tuple2<String,AnomalyResult>> result
= anomalyDetector.getAnomalySteam(inStream,new KExtract(),Time.seconds(5));
// print the result
result.print();
env.execute("Simple Exponential Example Keyed");
}
示例12: testSimple
import org.apache.flink.streaming.api.datastream.DataStream; //導入方法依賴的package包/類
@Test
public void testSimple() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
final int NUM_CYCLES = 400;
final int INPUT_GROUP_COUNT = 7; // Days of Week
List<TestHarness.DayDemoRecord> records = IntStream.range(0, NUM_CYCLES)
.flatMap(c -> IntStream.range(0, INPUT_GROUP_COUNT))
.mapToObj(day -> new TestHarness.DayDemoRecord(day))
.collect(Collectors.toList());
DataStream<TestHarness.DayDemoRecord> input = env.fromCollection(records);
DataStream<Tuple3<Integer,Double,Double>> result = HTM
.learn(input, new TestHarness.DayDemoNetworkFactory())
.resetOn(new ResetFunction<TestHarness.DayDemoRecord>() {
@Override
public boolean reset(TestHarness.DayDemoRecord value) throws Exception {
return value.dayOfWeek == 0;
}
})
.select(new InferenceSelectFunction<TestHarness.DayDemoRecord, Tuple3<Integer,Double,Double>>() {
@Override
public Tuple3<Integer,Double,Double> select(Tuple2<TestHarness.DayDemoRecord,NetworkInference> inference) throws Exception {
return new Tuple3<>(
inference.f0.dayOfWeek,
(Double) inference.f1.getClassification("dayOfWeek").getMostProbableValue(1),
inference.f1.getAnomalyScore());
}
});
result.writeAsCsv(resultPath, FileSystem.WriteMode.OVERWRITE);
result.print();
env.execute();
}
示例13: testCheckpointWithKeyedStream
import org.apache.flink.streaming.api.datastream.DataStream; //導入方法依賴的package包/類
/**
* Test the checkpoint behavior of the HTM operator.
* @throws Exception
*/
@Test
public void testCheckpointWithKeyedStream() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
env.enableCheckpointing(5000);
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(1, 0));
DataStream<TestHarness.DayDemoRecord> source = env
.addSource(new TestHarness.DayDemoRecordSourceFunction(2, true))
.keyBy("dayOfWeek");
DataStream<Tuple3<Integer,Double,Double>> result =
HTM.learn(source, new TestHarness.DayDemoNetworkFactory())
.select(new InferenceSelectFunction<TestHarness.DayDemoRecord, Tuple3<Integer,Double,Double>>() {
@Override
public Tuple3<Integer,Double,Double> select(Tuple2<TestHarness.DayDemoRecord,NetworkInference> inference) throws Exception {
return new Tuple3<>(
inference.f0.dayOfWeek,
(Double) inference.f1.getClassification("dayOfWeek").getMostProbableValue(1),
inference.f1.getAnomalyScore());
}
});
result.print();
env.execute();
}
示例14: runFailOnNoBrokerTest
import org.apache.flink.streaming.api.datastream.DataStream; //導入方法依賴的package包/類
/**
* Test that ensures the KafkaConsumer is properly failing if the topic doesnt exist
* and a wrong broker was specified.
*
* @throws Exception
*/
public void runFailOnNoBrokerTest() throws Exception {
try {
Properties properties = new Properties();
StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment();
see.getConfig().disableSysoutLogging();
see.setRestartStrategy(RestartStrategies.noRestart());
see.setParallelism(1);
// use wrong ports for the consumers
properties.setProperty("bootstrap.servers", "localhost:80");
properties.setProperty("zookeeper.connect", "localhost:80");
properties.setProperty("group.id", "test");
properties.setProperty("request.timeout.ms", "3000"); // let the test fail fast
properties.setProperty("socket.timeout.ms", "3000");
properties.setProperty("session.timeout.ms", "2000");
properties.setProperty("fetch.max.wait.ms", "2000");
properties.setProperty("heartbeat.interval.ms", "1000");
properties.putAll(secureProps);
FlinkKafkaConsumerBase<String> source = kafkaServer.getConsumer("doesntexist", new SimpleStringSchema(), properties);
DataStream<String> stream = see.addSource(source);
stream.print();
see.execute("No broker test");
} catch (JobExecutionException jee) {
if (kafkaServer.getVersion().equals("0.9") || kafkaServer.getVersion().equals("0.10") || kafkaServer.getVersion().equals("0.11")) {
assertTrue(jee.getCause() instanceof TimeoutException);
TimeoutException te = (TimeoutException) jee.getCause();
assertEquals("Timeout expired while fetching topic metadata", te.getMessage());
} else {
assertTrue(jee.getCause() instanceof RuntimeException);
RuntimeException re = (RuntimeException) jee.getCause();
assertTrue(re.getMessage().contains("Unable to retrieve any partitions"));
}
}
}
示例15: main
import org.apache.flink.streaming.api.datastream.DataStream; //導入方法依賴的package包/類
public static void main(final String[] args) throws Exception {
if (!parseParameters(args)) {
return;
}
// set up the execution environment
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// get input data
final DataStream<String> text = getTextDataStream(env);
final DataStream<Tuple2<String, Integer>> counts =
// split up the lines in pairs (2-tuples) containing: (word,1)
text.flatMap(new Tokenizer())
// group by the tuple field "0" and sum up tuple field "1"
.keyBy(0).sum(1);
// emit result
if (fileOutput) {
counts.writeAsText(outputPath);
} else {
counts.print();
}
// execute program
env.execute("Streaming WordCount with spout source");
}