本文整理匯總了Java中org.apache.commons.math3.stat.regression.SimpleRegression.getSlope方法的典型用法代碼示例。如果您正苦於以下問題:Java SimpleRegression.getSlope方法的具體用法?Java SimpleRegression.getSlope怎麽用?Java SimpleRegression.getSlope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.commons.math3.stat.regression.SimpleRegression
的用法示例。
在下文中一共展示了SimpleRegression.getSlope方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: calculareTrend
import org.apache.commons.math3.stat.regression.SimpleRegression; //導入方法依賴的package包/類
private List<List<Object>> calculareTrend(List<List<Object>> measurements) {
SimpleRegression regression = new SimpleRegression(true);
Long firstX = null;
Long lastX = null;
for(int i = 0; i < measurements.size(); i++) {
List<Object> measurement = measurements.get(i);
Long x = (Long) measurement.get(0);
BigDecimal y = (BigDecimal) measurement.get(1);
regression.addData(x.doubleValue(), y.doubleValue());
if (i == 0) {
firstX = x;
} else if (i + 1 == measurements.size()) {
lastX = x;
}
}
double slope = regression.getSlope();
if (Double.isNaN(slope)) {
return new ArrayList<>();
} else {
List<Object> start = Lists.newArrayList(firstX, regression.predict(firstX));
List<Object> end = Lists.newArrayList(lastX, regression.predict(lastX));
return Lists.newArrayList(start, end);
}
}
示例2: makePrediction
import org.apache.commons.math3.stat.regression.SimpleRegression; //導入方法依賴的package包/類
private void makePrediction(List<GlucoseData> trendList) {
if (trendList.size() == 0) {
return;
}
regression = new SimpleRegression();
for (int i = 0; i < trendList.size(); i++) {
regression.addData(i, (trendList.get(i)).getGlucoseLevelRaw());
}
int glucoseLevelRaw =
(int) regression.predict(regression.getN() - 1 + PREDICTION_TIME);
glucoseSlopeRaw = regression.getSlope();
confidenceInterval = regression.getSlopeConfidenceInterval();
int ageInSensorMinutes =
trendList.get(trendList.size() - 1).getAgeInSensorMinutes() + PREDICTION_TIME;
glucoseData = new GlucoseData(trendList.get(0).getSensor(), ageInSensorMinutes, trendList.get(0).getTimezoneOffsetInMinutes(), glucoseLevelRaw, true);
}
示例3: getSlope
import org.apache.commons.math3.stat.regression.SimpleRegression; //導入方法依賴的package包/類
public double getSlope(BufferedImage bi1, BufferedImage bi2, int u, int v, int s, int n) throws IOException {
Raster r1 = bi1.getRaster().createTranslatedChild(0,0);
Raster r2 = bi2.getRaster().createTranslatedChild(0,0);
if (r1.getNumBands()>1) throw new IllegalArgumentException("only 1-banded rasters allowed here");
if (r2.getNumBands()>1) throw new IllegalArgumentException("only 1-banded rasters allowed here");
SimpleRegression reg = new SimpleRegression(true);
int minX = u<0?u*-1:0;
int minY = v<0?v*-1:0;
int maxX = u>0?bi1.getWidth()-u: bi1.getWidth();
int maxY = v>0?bi1.getHeight()-v: bi1.getHeight();
for (int x=minX; x<maxX; x++) {
for (int y=minY; y<maxY; y++) {
double d1 = r1.getSampleDouble(x+u,y+v,0);
if (d1> intensityThreshold) {
double d2 = r2.getSampleDouble(x, y, 0);
reg.addData(d2, d1);
}
}
}
double slope = reg.getSlope();
double intercept = reg.getIntercept();
logger.info("i,j: "+s+","+n+": "+ "slope: "+slope+" ; intercept: "+intercept);
return slope;
}
示例4: removeTrend
import org.apache.commons.math3.stat.regression.SimpleRegression; //導入方法依賴的package包/類
/**
* Enfernt den Trend von einer Zeitreihe
* und speichert diese beiden in ein Objekt der @{@link TrendRemovedTimeSeries}-Klasse.
*
* @param timeSeriesWithTrend Zeitreihe von dem der Trend entfernt wird.
* @return Ein Objekt, welche die trendbereinigte Zeitreihe und den Trend enthält.
*/
public static TrendRemovedTimeSeries removeTrend(final double[] timeSeriesWithTrend) {
final double[] timeSeriesWithoutTrend = new double[timeSeriesWithTrend.length];
//Ermittle den Trend der Zeitreihe
final SimpleRegression regression = getRegression(timeSeriesWithTrend);
final double slope = regression.getSlope();
//Entferne den Trend
for (int i = 0; i < timeSeriesWithTrend.length; i++) {
final double trend = i * slope;
timeSeriesWithoutTrend[i] = timeSeriesWithTrend[i] - trend;
}
//Kapsele den Trend und die Zeitreihe in ein Objekt und gebe es aus
return new TrendRemovedTimeSeries(timeSeriesWithoutTrend, slope);
}
示例5: process
import org.apache.commons.math3.stat.regression.SimpleRegression; //導入方法依賴的package包/類
@Override
public Data process(Data item) {
// TODO Auto-generated method stub
Utils.mapContainsKeys(item, key);
double[] data = (double[]) item.get(key);
double[] slope = new double[data.length];
double[] intercept = new double[data.length];
for (int i = 1; i < data.length; i++) {
SimpleRegression regression = new SimpleRegression();
for (int j = 0; j < width; j++) {
regression.addData(j, data[(i + j) % data.length]);
}
regression.regress();
slope[(i + (width / 2)) % data.length] = scale * regression.getSlope();
intercept[(i + (width / 2)) % data.length] = regression.getIntercept();
}
item.put(slopeKey, slope);
item.put(interceptKey, intercept);
return item;
}
示例6: getPredictionData
import org.apache.commons.math3.stat.regression.SimpleRegression; //導入方法依賴的package包/類
@NonNull
private static PredictionData getPredictionData(int attempt, String tagId, ArrayList<GlucoseData> trendList) {
PredictionData predictedGlucose = new PredictionData();
SimpleRegression regression = new SimpleRegression();
for (int i = 0; i < trendList.size(); i++) {
regression.addData(trendList.size() - i, (trendList.get(i)).glucoseLevel);
}
predictedGlucose.glucoseLevel = (int)regression.predict(15 + PREDICTION_TIME);
predictedGlucose.trend = regression.getSlope();
predictedGlucose.confidence = regression.getSlopeConfidenceInterval();
predictedGlucose.errorCode = PredictionData.Result.OK;
predictedGlucose.realDate = trendList.get(0).realDate;
predictedGlucose.sensorId = tagId;
predictedGlucose.attempt = attempt;
predictedGlucose.sensorTime = trendList.get(0).sensorTime;
return predictedGlucose;
}
示例7: calculateElongationRate
import org.apache.commons.math3.stat.regression.SimpleRegression; //導入方法依賴的package包/類
/**
* TODO Documentation
*
* @param cells
* @return
*/
private Double calculateElongationRate(List<Cell> cells) {
Double lengths[] = new Double[cells.size()];
Double time[] = new Double[cells.size()];
int i=0;
SimpleRegression regression = new SimpleRegression();
for(Cell c:cells) {
lengths[i] = c.getLength();
time[i] = c.getMIFrameObject().getElapsedTime();
regression.addData(time[i], lengths[i]);
i++;
}
return regression.getSlope();
}
示例8: computeBufferSizeTrend
import org.apache.commons.math3.stat.regression.SimpleRegression; //導入方法依賴的package包/類
public void computeBufferSizeTrend() {
for (InstanceMetrics instanceMetrics : componentMetrics.getMetrics().values()) {
Map<Instant, Double> bufferMetrics
= instanceMetrics.getMetrics().get(METRIC_BUFFER_SIZE.text());
if (bufferMetrics == null || bufferMetrics.size() < 3) {
// missing of insufficient data for creating a trend line
continue;
}
SimpleRegression simpleRegression = new SimpleRegression(true);
for (Instant timestamp : bufferMetrics.keySet()) {
simpleRegression.addData(timestamp.getEpochSecond(), bufferMetrics.get(timestamp));
}
double slope = simpleRegression.getSlope();
instanceMetrics.addMetric(METRIC_WAIT_Q_GROWTH_RATE.text(), slope);
if (maxBufferChangeRate < slope) {
maxBufferChangeRate = slope;
}
}
}
示例9: dataRegressionSlope
import org.apache.commons.math3.stat.regression.SimpleRegression; //導入方法依賴的package包/類
private double dataRegressionSlope(Double[] extrems) {
List<double[]> regInput = new ArrayList<double[]>();
int j = 0;
for (int i = 0; i < extrems.length; i++) {
if (extrems[i] != 0d) {
regInput.add(new double[]{j,extrems[i]});
}
j++;
}
SimpleRegression regression = new SimpleRegression();
regression.addData(regInput.toArray(new double[0][]));
double slope = regression.getSlope();
return slope;
}
示例10: assertResultsMatch
import org.apache.commons.math3.stat.regression.SimpleRegression; //導入方法依賴的package包/類
/**
* Checks that the Morpheus OLS model yields the same results as Apache Math
* @param frame the data for regression
* @param actual the Morpheus results
* @param expected the Apache results
*/
private <R> void assertResultsMatch(DataFrame<String,String> frame, DataFrameLeastSquares<String,String> actual, SimpleRegression expected) {
final double tss1 = actual.getTotalSumOfSquares();
final double tss2 = expected.getTotalSumSquares();
final double threshold = ((tss1 + tss2) / 2d) * 0.00001d;
Assert.assertEquals(actual.getTotalSumOfSquares(), expected.getTotalSumSquares(), threshold, "Total sum of squares matches");
Assert.assertEquals(actual.getRSquared(), expected.getRSquare(), 0.0000001, "R^2 values match");
final double beta1 = actual.getBetaValue("X", Field.PARAMETER);
final double beta2 = expected.getSlope();
Assert.assertEquals(beta1, beta2, 0.000001, "Beta parameters match");
final double intercept = expected.getIntercept();
final double interceptStdError = expected.getInterceptStdErr();
Assert.assertEquals(actual.getInterceptValue(Field.PARAMETER), intercept, 0.0000001, "The intercepts match");
Assert.assertEquals(actual.getInterceptValue(Field.STD_ERROR), interceptStdError, 0.000000001, "The intercept std errors match");
final double betaStdErr1 = actual.getBetaValue("X", Field.STD_ERROR);
final double betaStdErr2 = expected.getSlopeStdErr();
Assert.assertEquals(betaStdErr1, betaStdErr2, 0.00000001, "Beta Standard errors match");
final DataFrame<String,String> residuals = actual.getResiduals();
Assert.assertEquals(residuals.rows().count(), frame.rows().count(), "There are expected number of residuals");
residuals.rows().forEach(row -> {
final double x = frame.data().getDouble(row.ordinal(), "X");
final double y = frame.data().getDouble(row.ordinal(), "Y");
final double residual = row.getDouble(0);
final double expect = y - expected.predict(x);
Assert.assertEquals(residual, expect, 0.0000001, "Residual matches for x=" + x + " at row index " + row.ordinal());
});
}
示例11: calculateSlope
import org.apache.commons.math3.stat.regression.SimpleRegression; //導入方法依賴的package包/類
public double calculateSlope(int slopePos, int numSlices, double[] data) {
//calculate slope
SimpleRegression regression = new SimpleRegression();
for (int j = 0; j < numSlices; j++) {
regression.addData(j, data[(j + slopePos - numSlices / 2) % data.length]);
}
regression.regress();
return regression.getSlope();
}
示例12: solve
import org.apache.commons.math3.stat.regression.SimpleRegression; //導入方法依賴的package包/類
/**
* Directly solve the linear problem, using the {@link SimpleRegression}
* class.
*/
public double[] solve() {
final SimpleRegression regress = new SimpleRegression(true);
for (double[] d : points) {
regress.addData(d[0], d[1]);
}
final double[] result = { regress.getSlope(), regress.getIntercept() };
return result;
}
示例13: McLeanOrdinaryLeastSquaresRegressionLine
import org.apache.commons.math3.stat.regression.SimpleRegression; //導入方法依賴的package包/類
public McLeanOrdinaryLeastSquaresRegressionLine(SimpleRegression regression) {
this.regression = regression;
a = new double[2][1];
a[1][0] = regression.getIntercept();
v = new double[2][1];
v[1][0] = regression.getSlope();
}
示例14: getExpectedValue
import org.apache.commons.math3.stat.regression.SimpleRegression; //導入方法依賴的package包/類
@Override
public Object getExpectedValue(int start, int length)
{
if (length <= 1) {
return null;
}
SimpleRegression regression = new SimpleRegression();
for (int i = start; i < start + length; i++) {
regression.addData(i + 2, i);
}
return regression.getSlope();
}
示例15: testNonTrivialAggregation
import org.apache.commons.math3.stat.regression.SimpleRegression; //導入方法依賴的package包/類
private void testNonTrivialAggregation(Double[] y, Double[] x)
{
SimpleRegression regression = new SimpleRegression();
for (int i = 0; i < x.length; i++) {
regression.addData(x[i], y[i]);
}
double expected = regression.getSlope();
checkArgument(Double.isFinite(expected) && expected != 0.0, "Expected result is trivial");
testAggregation(expected, createDoublesBlock(y), createDoublesBlock(x));
}