當前位置: 首頁>>代碼示例>>Java>>正文


Java Mean.evaluate方法代碼示例

本文整理匯總了Java中org.apache.commons.math3.stat.descriptive.moment.Mean.evaluate方法的典型用法代碼示例。如果您正苦於以下問題:Java Mean.evaluate方法的具體用法?Java Mean.evaluate怎麽用?Java Mean.evaluate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在org.apache.commons.math3.stat.descriptive.moment.Mean的用法示例。


在下文中一共展示了Mean.evaluate方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: covariance

import org.apache.commons.math3.stat.descriptive.moment.Mean; //導入方法依賴的package包/類
/**
 * Computes the covariance between the two arrays.
 *
 * <p>Array lengths must match and the common length must be at least 2.</p>
 *
 * @param xArray first data array
 * @param yArray second data array
 * @param biasCorrected if true, returned value will be bias-corrected
 * @return returns the covariance for the two arrays
 * @throws  MathIllegalArgumentException if the arrays lengths do not match or
 * there is insufficient data
 */
public double covariance(final double[] xArray, final double[] yArray, boolean biasCorrected)
    throws MathIllegalArgumentException {
    Mean mean = new Mean();
    double result = 0d;
    int length = xArray.length;
    if (length != yArray.length) {
        throw new MathIllegalArgumentException(
              LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, length, yArray.length);
    } else if (length < 2) {
        throw new MathIllegalArgumentException(
              LocalizedFormats.INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE, length, 2);
    } else {
        double xMean = mean.evaluate(xArray);
        double yMean = mean.evaluate(yArray);
        for (int i = 0; i < length; i++) {
            double xDev = xArray[i] - xMean;
            double yDev = yArray[i] - yMean;
            result += (xDev * yDev - result) / (i + 1);
        }
    }
    return biasCorrected ? result * ((double) length / (double)(length - 1)) : result;
}
 
開發者ID:biocompibens,項目名稱:SME,代碼行數:35,代碼來源:Covariance.java

示例2: get_cv

import org.apache.commons.math3.stat.descriptive.moment.Mean; //導入方法依賴的package包/類
public Map<String, Double> get_cv(String[] group_var, String[] uniq_group){
    Map<String, Double> group_to_cv_map = new TreeMap<String, Double>();
    Map<String, ArrayList<Double> > grouped_y = new TreeMap<String, ArrayList<Double>>();
    for (String aUniq_group : uniq_group){
        grouped_y.put(aUniq_group, new ArrayList<Double>());
        for (int i = 0; i < group_var.length; i++) {
            if (group_var[i].equals(aUniq_group)){
                grouped_y.get(aUniq_group).add(this.y_list.get(i));
            }
        }
    }

    StandardDeviation std_stat = new StandardDeviation(true);
    Mean mean_stat = new Mean();
    for(Iterator<Map.Entry<String, ArrayList<Double>>> it = grouped_y.entrySet().iterator(); it.hasNext(); ) {
        Map.Entry<String, ArrayList<Double>> entry = it.next();
        double[] cur_y_arr = ArrayUtils.toPrimitive(entry.getValue().toArray(new Double[entry.getValue().size()]));
        double  std = std_stat.evaluate(cur_y_arr);
        double mean = mean_stat.evaluate(cur_y_arr);
        group_to_cv_map.put(entry.getKey(), std/mean);
    }

    this.cv = group_to_cv_map;
    return group_to_cv_map;
}
 
開發者ID:jiach,項目名稱:MetaDiff,代碼行數:26,代碼來源:ArrFPKM.java

示例3: testCalculateReducedPanelAndPInversesUsingJollifesRule

import org.apache.commons.math3.stat.descriptive.moment.Mean; //導入方法依賴的package包/類
@Test(dataProvider = "readCountOnlyWithDiverseShapeData")
public void testCalculateReducedPanelAndPInversesUsingJollifesRule(final ReadCountCollection readCounts) {
    final JavaSparkContext ctx = SparkContextFactory.getTestSparkContext();
    final ReductionResult result = HDF5PCACoveragePoNCreationUtils.calculateReducedPanelAndPInverses(readCounts, OptionalInt.empty(), NULL_LOGGER, ctx);
    final RealMatrix counts = readCounts.counts();
    Assert.assertNotNull(result);
    Assert.assertNotNull(result.getPseudoInverse());
    Assert.assertNotNull(result.getReducedCounts());
    Assert.assertNotNull(result.getReducedPseudoInverse());
    Assert.assertNotNull(result.getAllSingularValues());
    Assert.assertEquals(counts.getColumnDimension(), result.getAllSingularValues().length);
    Assert.assertEquals(result.getReducedCounts().getRowDimension(), counts.getRowDimension());
    final int eigensamples = result.getReducedCounts().getColumnDimension();
    final Mean mean = new Mean();
    final double meanSingularValue = mean.evaluate(result.getAllSingularValues());
    final double threshold = HDF5PCACoveragePoNCreationUtils.JOLLIFES_RULE_MEAN_FACTOR * meanSingularValue;
    final int expectedEigensamples = (int) DoubleStream.of(result.getAllSingularValues()).filter(d -> d >= threshold).count();
    Assert.assertTrue(eigensamples <= counts.getColumnDimension());
    Assert.assertEquals(eigensamples, expectedEigensamples);
    assertPseudoInverse(counts, result.getPseudoInverse());
    assertPseudoInverse(result.getReducedCounts(), result.getReducedPseudoInverse());
}
 
開發者ID:broadinstitute,項目名稱:gatk-protected,代碼行數:23,代碼來源:HDF5PCACoveragePoNCreationUtilsUnitTest.java

示例4: evaluate

import org.apache.commons.math3.stat.descriptive.moment.Mean; //導入方法依賴的package包/類
@Override
/**
 * @return [0] Mean  distance [1] SD  distance 
 */
public double[] evaluate() {
	splinefit = new TrajectorySplineFit(t,nSegments);
	splinefit.calculateSpline();
	if(!splinefit.wasSuccessfull()){
		return new double[] {Double.NaN,Double.NaN};
	}
	double[] data = new double[t.size()];
	for(int i = 0; i < t.size(); i++){
		
		Point2D.Double help = new Point2D.Double(splinefit.getRotatedTrajectory().get(i).x, splinefit.getRotatedTrajectory().get(i).y);
		data[i] = help.distance(splinefit.minDistancePointSpline(new Point2D.Double(splinefit.getRotatedTrajectory().get(i).x, splinefit.getRotatedTrajectory().get(i).y), 50));
	}
	Mean m = new Mean();
	StandardDeviation sd = new StandardDeviation();
	result = new double[] {m.evaluate(data),sd.evaluate(data)};
	return result;

	 
}
 
開發者ID:thorstenwagner,項目名稱:TraJ,代碼行數:24,代碼來源:SplineCurveSpatialFeature.java

示例5: covariance

import org.apache.commons.math3.stat.descriptive.moment.Mean; //導入方法依賴的package包/類
/**
 * Computes the covariance between the two arrays.
 *
 * <p>Array lengths must match and the common length must be at least 2.</p>
 *
 * @param xArray first data array
 * @param yArray second data array
 * @param biasCorrected if true, returned value will be bias-corrected
 * @return returns the covariance for the two arrays
 * @throws  IllegalArgumentException if the arrays lengths do not match or
 * there is insufficient data
 */
public double covariance(final double[] xArray, final double[] yArray, boolean biasCorrected)
    throws IllegalArgumentException {
    Mean mean = new Mean();
    double result = 0d;
    int length = xArray.length;
    if (length != yArray.length) {
        throw new MathIllegalArgumentException(
              LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, length, yArray.length);
    } else if (length < 2) {
        throw new MathIllegalArgumentException(
              LocalizedFormats.INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE, length, 2);
    } else {
        double xMean = mean.evaluate(xArray);
        double yMean = mean.evaluate(yArray);
        for (int i = 0; i < length; i++) {
            double xDev = xArray[i] - xMean;
            double yDev = yArray[i] - yMean;
            result += (xDev * yDev - result) / (i + 1);
        }
    }
    return biasCorrected ? result * ((double) length / (double)(length - 1)) : result;
}
 
開發者ID:SpoonLabs,項目名稱:astor,代碼行數:35,代碼來源:Covariance.java

示例6: usingApacheCommons

import org.apache.commons.math3.stat.descriptive.moment.Mean; //導入方法依賴的package包/類
public void usingApacheCommons() {
    // Using Apache Commons to find mean
    Mean mean = new Mean();
    double average = mean.evaluate(testData);
    out.println("The mean is " + average);

    DescriptiveStatistics statTest
            = new SynchronizedDescriptiveStatistics();
    for (double num : testData) {
        statTest.addValue(num);
    }
    out.println("The mean is " + statTest.getMean());

}
 
開發者ID:PacktPublishing,項目名稱:Machine-Learning-End-to-Endguide-for-Java-developers,代碼行數:15,代碼來源:Main.java

示例7: calMean

import org.apache.commons.math3.stat.descriptive.moment.Mean; //導入方法依賴的package包/類
private static double calMean(double[] values) {
	List<Double> nonNa = new ArrayList<>();
	for (int i = 0; i<values.length; i++) {
		if (!Double.isNaN(values[i])) {
			nonNa.add(values[i]);
		}
	}
	int nonNaCount = nonNa.size();
	double[] nonNaValues = Stream.of(nonNa.toArray(new Double[nonNaCount])).
			mapToDouble(Double::doubleValue).toArray();
	Mean mean = new Mean();
	return mean.evaluate(nonNaValues,0,nonNaValues.length);
}
 
開發者ID:jasminezhoulab,項目名稱:CancerLocator,代碼行數:14,代碼來源:CancerLocator.java

示例8: estBetaDist

import org.apache.commons.math3.stat.descriptive.moment.Mean; //導入方法依賴的package包/類
public static double[] estBetaDist(double[] betaValues) {
	Mean mean = new Mean();
	double mu = mean.evaluate(betaValues,0,betaValues.length);
	Variance variance = new Variance();
	double var = variance.evaluate(betaValues, mu);
	double alpha = -mu*(var+mu*mu-mu)/var;
	double beta = (mu-1)*(var+mu*mu-mu)/var;
	return new double[] {alpha, beta, mu, FastMath.sqrt(var)};
}
 
開發者ID:jasminezhoulab,項目名稱:CancerLocator,代碼行數:10,代碼來源:MethyModel.java

示例9: meanAbsoluteSteplength

import org.apache.commons.math3.stat.descriptive.moment.Mean; //導入方法依賴的package包/類
public static double meanAbsoluteSteplength(Trajectory t){
	double[] v = new double[t.size()-1];
	
	for(int i = 1; i < t.size(); i++){
		v[i-1] = Math.abs(t.get(i).distance(t.get(i-1)));
	}
	
	Mean m = new Mean();
	
	return m.evaluate(v);
}
 
開發者ID:thorstenwagner,項目名稱:ij-trajectory-classifier,代碼行數:12,代碼來源:TraJClassifier_Debug.java

示例10: calculateNthMoment

import org.apache.commons.math3.stat.descriptive.moment.Mean; //導入方法依賴的package包/類
public double calculateNthMoment(int n){
	Array2DRowRealMatrix gyr = RadiusGyrationTensor2D.getRadiusOfGyrationTensor(t);
	EigenDecomposition eigdec = new EigenDecomposition(gyr);
	
	Vector2d eigv = new Vector2d(eigdec.getEigenvector(0).getEntry(0),eigdec.getEigenvector(0).getEntry(1));

	double[] projected = new double[t.size()];
	for(int i = 0; i < t.size(); i++){
		Vector2d pos = new Vector2d(t.get(i).x,t.get(i).y);
		double v = eigv.dot(pos);
		projected[i] = v;
	}
	
	Mean m = new Mean();
	StandardDeviation s = new StandardDeviation();
	double mean = m.evaluate(projected);
	double sd  = s.evaluate(projected);
	double sumPowN=0;

	for(int i = 0; i < projected.length; i++){
		sumPowN += Math.pow( (projected[i]-mean)/sd, n);
	}

	double nThMoment =  sumPowN/projected.length;
	
	return nThMoment;
}
 
開發者ID:thorstenwagner,項目名稱:TraJ,代碼行數:28,代碼來源:MomentsCalculator.java

示例11: getMeanRunTime

import org.apache.commons.math3.stat.descriptive.moment.Mean; //導入方法依賴的package包/類
/**
 * Returns the mean for the warmup time.
 *
 * @return the warmup time.
 */
public double getMeanRunTime() {
	final Mean median = new Mean();
	final double[] res = convertIntoArray(benchTimes);
	
	return median.evaluate(res);
}
 
開發者ID:sleroy,項目名稱:bench4j,代碼行數:12,代碼來源:BenchRecord.java

示例12: getMeanWarmupTime

import org.apache.commons.math3.stat.descriptive.moment.Mean; //導入方法依賴的package包/類
/**
 * Returns the mean for the bench time.
 *
 * @return the warmup time.
 */
public double getMeanWarmupTime() {
	final Mean median = new Mean();
	final double[] res = convertIntoArray(warmupTimes);
	
	return median.evaluate(res);
}
 
開發者ID:sleroy,項目名稱:bench4j,代碼行數:12,代碼來源:BenchRecord.java

示例13: getMean

import org.apache.commons.math3.stat.descriptive.moment.Mean; //導入方法依賴的package包/類
/** Compute artihmetic mean of the samples.
 * 
 * @return Arithmetic mean of the data in the original benchmark run.
 */
public synchronized double getMean() {
	if (cacheMean == null) {
		Mean mean = new Mean();
		cacheMean = mean.evaluate(data);
	}
	return cacheMean;
}
 
開發者ID:D-iii-S,項目名稱:spl-evaluation-java,代碼行數:12,代碼來源:BenchmarkRunSummary.java

示例14: stop

import org.apache.commons.math3.stat.descriptive.moment.Mean; //導入方法依賴的package包/類
protected Result stop(boolean interarrival) {
	double cpu = ((double)(mxbean.getCurrentThreadCpuTime()-cputime))/idx;
	if (interarrival) {
		for(int i = idx-1; i>0; i--)
			times[i]-=times[i-1];
		begin = 1;			
	}
	Mean mean = new Mean();
	double m = mean.evaluate(times, begin, idx-begin);
	Variance var = new Variance();
	double v = var.evaluate(times, m, begin, idx-begin);
	return new Result(m, v, cpu);
}
 
開發者ID:jopereira,項目名稱:minha,代碼行數:14,代碼來源:AbstractBenchmark.java

示例15: calculate_average_of_array_apache

import org.apache.commons.math3.stat.descriptive.moment.Mean; //導入方法依賴的package包/類
@Test
public void calculate_average_of_array_apache () {
	
	Mean mean = new Mean();
	double average = mean.evaluate(NUMBERS);
	
	assertEquals(35.36363636363637, average, 0);
}
 
開發者ID:wq19880601,項目名稱:java-util-examples,代碼行數:9,代碼來源:AverageFromArray.java


注:本文中的org.apache.commons.math3.stat.descriptive.moment.Mean.evaluate方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。