本文整理匯總了Java中org.apache.commons.math3.stat.StatUtils.meanDifference方法的典型用法代碼示例。如果您正苦於以下問題:Java StatUtils.meanDifference方法的具體用法?Java StatUtils.meanDifference怎麽用?Java StatUtils.meanDifference使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.commons.math3.stat.StatUtils
的用法示例。
在下文中一共展示了StatUtils.meanDifference方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: meanDifference
import org.apache.commons.math3.stat.StatUtils; //導入方法依賴的package包/類
public static double meanDifference(FloatColumn column1, FloatColumn column2) {
return StatUtils.meanDifference(column1.toDoubleArray(), column2.toDoubleArray());
}
示例2: pairedT
import org.apache.commons.math3.stat.StatUtils; //導入方法依賴的package包/類
/**
* Computes a paired, 2-sample t-statistic based on the data in the input
* arrays. The t-statistic returned is equivalent to what would be returned by
* computing the one-sample t-statistic {@link #t(double, double[])}, with
* <code>mu = 0</code> and the sample array consisting of the (signed)
* differences between corresponding entries in <code>sample1</code> and
* <code>sample2.</code>
* <p>
* <strong>Preconditions</strong>: <ul>
* <li>The input arrays must have the same length and their common length
* must be at least 2.
* </li></ul></p>
*
* @param sample1 array of sample data values
* @param sample2 array of sample data values
* @return t statistic
* @throws NullArgumentException if the arrays are <code>null</code>
* @throws NoDataException if the arrays are empty
* @throws DimensionMismatchException if the length of the arrays is not equal
* @throws NumberIsTooSmallException if the length of the arrays is < 2
*/
public double pairedT(final double[] sample1, final double[] sample2)
throws NullArgumentException, NoDataException,
DimensionMismatchException, NumberIsTooSmallException {
checkSampleData(sample1);
checkSampleData(sample2);
double meanDifference = StatUtils.meanDifference(sample1, sample2);
return t(meanDifference, 0,
StatUtils.varianceDifference(sample1, sample2, meanDifference),
sample1.length);
}
示例3: pairedTTest
import org.apache.commons.math3.stat.StatUtils; //導入方法依賴的package包/類
/**
* Returns the <i>observed significance level</i>, or
* <i> p-value</i>, associated with a paired, two-sample, two-tailed t-test
* based on the data in the input arrays.
* <p>
* The number returned is the smallest significance level
* at which one can reject the null hypothesis that the mean of the paired
* differences is 0 in favor of the two-sided alternative that the mean paired
* difference is not equal to 0. For a one-sided test, divide the returned
* value by 2.</p>
* <p>
* This test is equivalent to a one-sample t-test computed using
* {@link #tTest(double, double[])} with <code>mu = 0</code> and the sample
* array consisting of the signed differences between corresponding elements of
* <code>sample1</code> and <code>sample2.</code></p>
* <p>
* <strong>Usage Note:</strong><br>
* The validity of the p-value depends on the assumptions of the parametric
* t-test procedure, as discussed
* <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">
* here</a></p>
* <p>
* <strong>Preconditions</strong>: <ul>
* <li>The input array lengths must be the same and their common length must
* be at least 2.
* </li></ul></p>
*
* @param sample1 array of sample data values
* @param sample2 array of sample data values
* @return p-value for t-test
* @throws NullArgumentException if the arrays are <code>null</code>
* @throws NoDataException if the arrays are empty
* @throws DimensionMismatchException if the length of the arrays is not equal
* @throws NumberIsTooSmallException if the length of the arrays is < 2
* @throws MaxCountExceededException if an error occurs computing the p-value
*/
public double pairedTTest(final double[] sample1, final double[] sample2)
throws NullArgumentException, NoDataException, DimensionMismatchException,
NumberIsTooSmallException, MaxCountExceededException {
double meanDifference = StatUtils.meanDifference(sample1, sample2);
return tTest(meanDifference, 0,
StatUtils.varianceDifference(sample1, sample2, meanDifference),
sample1.length);
}