本文整理匯總了Java中org.apache.commons.math3.random.RandomGenerator.setSeed方法的典型用法代碼示例。如果您正苦於以下問題:Java RandomGenerator.setSeed方法的具體用法?Java RandomGenerator.setSeed怎麽用?Java RandomGenerator.setSeed使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.commons.math3.random.RandomGenerator
的用法示例。
在下文中一共展示了RandomGenerator.setSeed方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: testNaNsFixedTiesRandom
import org.apache.commons.math3.random.RandomGenerator; //導入方法依賴的package包/類
@Test
public void testNaNsFixedTiesRandom() {
RandomGenerator randomGenerator = new JDKRandomGenerator();
randomGenerator.setSeed(1000);
NaturalRanking ranking = new NaturalRanking(NaNStrategy.FIXED,
randomGenerator);
double[] ranks = ranking.rank(exampleData);
double[] correctRanks = { 5, 3, 6, 7, 3, 8, Double.NaN, 1, 2 };
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(tiesFirst);
correctRanks = new double[] { 1, 2, 4, 3, 5 };
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(tiesLast);
correctRanks = new double[] { 3, 3, 2, 1 };
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(multipleNaNs);
correctRanks = new double[] { 1, 2, Double.NaN, Double.NaN };
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(multipleTies);
correctRanks = new double[] { 3, 2, 4, 4, 6, 7, 1 };
TestUtils.assertEquals(correctRanks, ranks, 0d);
ranks = ranking.rank(allSame);
correctRanks = new double[] { 2, 3, 3, 3 };
TestUtils.assertEquals(correctRanks, ranks, 0d);
}
示例2: testStoredVsDirect
import org.apache.commons.math3.random.RandomGenerator; //導入方法依賴的package包/類
@Test
public void testStoredVsDirect() {
final RandomGenerator rand= new JDKRandomGenerator();
rand.setSeed(Long.MAX_VALUE);
for (final int sampleSize:sampleSizes) {
final double[] data = new NormalDistribution(rand,4000, 50)
.sample(sampleSize);
for (final double p:new double[] {50d,95d}) {
for (final Percentile.EstimationType e : Percentile.EstimationType.values()) {
reset(p, e);
final Percentile pStoredData = getUnivariateStatistic();
pStoredData.setData(data);
final double storedDataResult=pStoredData.evaluate();
pStoredData.setData(null);
final Percentile pDirect = getUnivariateStatistic();
Assert.assertEquals("Sample="+sampleSize+",P="+p+" e="+e,
storedDataResult,
pDirect.evaluate(data),0d);
}
}
}
}
示例3: RandomStructureGenerator
import org.apache.commons.math3.random.RandomGenerator; //導入方法依賴的package包/類
/**
* Creates the generator
* @param nVariables number of nodes in the BN
* @param maxNParents Maximum number of parents per nodes - sampled from U(0,maxNParents)
* @param maxNValuesPerNode Maximum number of outcome per nodes - sampled from U(2,maxNValuesPerNode)
* @param nDataPoints Number of samples to generate
* @param alphaDirichlet will sample each multinomial in the CPT (ie line) from Dir(alphaDirichlet). The highest value of alpha, the harder it will be to detect the correlations.
* @param seed Seed to pass to one of the random generator
*/
public RandomStructureGenerator(int nVariables, int maxNParents,int maxNValuesPerNode,int nDataPoints, double alphaDirichlet, long seed) {
this.nVariables = nVariables;
this.nDataPoints = nDataPoints;
this.maxNParents = maxNParents;
this.maxNValuesPerNode = maxNValuesPerNode;
this.alphaDirichlet = alphaDirichlet;
RandomGenerator rg = new JDKRandomGenerator();
rg.setSeed(seed);
this.r = new RandomDataGenerator(rg);
this.bn = null;
}
示例4: generate
import org.apache.commons.math3.random.RandomGenerator; //導入方法依賴的package包/類
public void generate(int sleep_frequency) throws InterruptedException {
// GenerateCentroids();
centroids = loadCentroids();
long time = System.currentTimeMillis();
ThroughputLog throughput = new ThroughputLog(this.getClass().getSimpleName());
Random centroid_random = new Random(2342342170123L);
RandomGenerator point_random = new JDKRandomGenerator();
point_random.setSeed(8624214);
for (long generated_points = 0; generated_points < POINT_NUM; generated_points++) {
int centroid_index = centroid_random.nextInt(centroids.size());
MultivariateNormalDistribution distribution = new MultivariateNormalDistribution(point_random, means, covariances);
double[] point = distribution.sample();
StringBuilder sb = new StringBuilder();
for (int i = 0; i < dimension - 1; i++) {
point[i] += centroids.get(centroid_index).location[i];
sb.append(point[i]).append("\t");
}
point[dimension - 1] += centroids.get(centroid_index).location[dimension - 1];
sb.append(point[dimension - 1]).append(Constant.TimeSeparator).append(System.currentTimeMillis());
throughput.execute();
ProducerRecord<String, String> newRecord = new ProducerRecord<>(TOPIC, sb.toString());
producer.send(newRecord);
// System.out.println(sb.toString());
// control data generate speed
if (sleep_frequency > 0 && generated_points % sleep_frequency == 0) {
Thread.sleep(1);
}
}
producer.close();
logger.info("LatencyLog: " + String.valueOf(System.currentTimeMillis() - time));
}
示例5: makeEmpirical
import org.apache.commons.math3.random.RandomGenerator; //導入方法依賴的package包/類
/** Create empirical distribution from given samples.
*
* @param samples Samples (does not need to be distinct) to use.
* @return Empirical distribution built from the samples.
*/
public static EmpiricalDistribution makeEmpirical(double[] samples) {
/* Be deterministic for now. */
RandomGenerator gen = new JDKRandomGenerator();
gen.setSeed(0);
EmpiricalDistribution result = new EmpiricalDistribution(samples.length / 10 + 1, gen);
result.load(samples);
return result;
}
示例6: testInterleavingGenerator
import org.apache.commons.math3.random.RandomGenerator; //導入方法依賴的package包/類
@Test
public void testInterleavingGenerator() {
final Random random = new Random(1);
final Random randomI = new Random(10);
final RandomGenerator randomC = new JDKRandomGenerator();
randomC.setSeed(100);
final Multiset<Sequence> seqsI = HashMultiset.create();
seqsI.add(new Sequence(1, 2, 3));
seqsI.add(new Sequence(4, 5));
seqsI.add(new Sequence(6));
seqsI.add(new Sequence(7));
final HashMap<Sequence, Double> seqsG = new HashMap<>();
for (final Sequence seq : seqsI.elementSet()) {
seqsG.put(seq, 1.0);
}
final Map<Sequence, EnumeratedIntegerDistribution> countDists = new HashMap<>();
final EnumeratedIntegerDistribution oneRepeat = new EnumeratedIntegerDistribution(randomC, new int[] { 1 },
new double[] { 1.0 });
countDists.put(new Sequence(1, 2, 3), oneRepeat);
countDists.put(new Sequence(4, 5), oneRepeat);
countDists.put(new Sequence(6), oneRepeat);
countDists.put(new Sequence(7), oneRepeat);
final HashSet<Transaction> transG = new HashSet<>();
for (int i = 0; i < 700000; i++)
transG.add(
TransactionGenerator.sampleFromDistribution(random, seqsG, countDists, new HashMap<>(), randomI));
// Note that upper bound is exact when there are no repetitions
assertEquals(transG.size(), modP(seqsI.iterator()), EPS);
}
示例7: generateTransactionDatabase
import org.apache.commons.math3.random.RandomGenerator; //導入方法依賴的package包/類
/**
* Generate transactions from set of interesting sequences
*
* @return set of sequences added to transaction
*/
public static HashMap<Sequence, Double> generateTransactionDatabase(final Map<Sequence, Double> sequences,
final Table<Sequence, Integer, Double> probabilities, final int noTransactions, final File outFile)
throws IOException {
// Set random number seeds
final Random random = new Random(1);
final Random randomI = new Random(10);
final RandomGenerator randomC = new JDKRandomGenerator();
randomC.setSeed(100);
// Storage for sequences actually added
final HashMap<Sequence, Double> addedSequences = new HashMap<>();
// Set output file
final PrintWriter out = new PrintWriter(outFile, "UTF-8");
// Add to distribution class for easy sampling
final Map<Sequence, EnumeratedIntegerDistribution> dists = new HashMap<>();
for (final Sequence seq : sequences.keySet()) {
final List<Integer> singletons = new ArrayList<>();
final List<Double> probs = new ArrayList<>();
for (final Entry<Integer, Double> entry : probabilities.row(seq).entrySet()) {
singletons.add(entry.getKey());
probs.add(entry.getValue());
}
final EnumeratedIntegerDistribution dist = new EnumeratedIntegerDistribution(randomC,
Ints.toArray(singletons), Doubles.toArray(probs));
dists.put(seq, dist);
}
// Generate transaction database
int count = 0;
while (count < noTransactions) {
// Generate transaction from distribution
final Transaction transaction = sampleFromDistribution(random, sequences, dists, addedSequences, randomI);
for (final int item : transaction) {
out.print(item + " -1 ");
}
if (!transaction.isEmpty()) {
out.print("-2");
out.println();
count++;
}
}
out.close();
// Print file to screen
if (VERBOSE) {
final FileReader reader = new FileReader(outFile);
final LineIterator it = new LineIterator(reader);
while (it.hasNext()) {
System.out.println(it.nextLine());
}
LineIterator.closeQuietly(it);
}
return addedSequences;
}