當前位置: 首頁>>代碼示例>>Java>>正文


Java RealVector.subtract方法代碼示例

本文整理匯總了Java中org.apache.commons.math3.linear.RealVector.subtract方法的典型用法代碼示例。如果您正苦於以下問題:Java RealVector.subtract方法的具體用法?Java RealVector.subtract怎麽用?Java RealVector.subtract使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在org.apache.commons.math3.linear.RealVector的用法示例。


在下文中一共展示了RealVector.subtract方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: computeBeta

import org.apache.commons.math3.linear.RealVector; //導入方法依賴的package包/類
/**
 *
 * @param y     the response vector
 * @param x     the design matrix
 */
private RealMatrix computeBeta(RealVector y, RealMatrix x) {
    if (solver == Solver.QR) {
        return computeBetaQR(y, x);
    } else {
        final int n = x.getRowDimension();
        final int p = x.getColumnDimension();
        final int offset = hasIntercept() ? 1 : 0;
        final RealMatrix xT = x.transpose();
        final RealMatrix xTxInv = new LUDecomposition(xT.multiply(x)).getSolver().getInverse();
        final RealVector betaVector = xTxInv.multiply(xT).operate(y);
        final RealVector residuals = y.subtract(x.operate(betaVector));
        this.rss = residuals.dotProduct(residuals);
        this.errorVariance = rss / (n - p);
        this.stdError = Math.sqrt(errorVariance);
        this.residuals = createResidualsFrame(residuals);
        final RealMatrix covMatrix = xTxInv.scalarMultiply(errorVariance);
        final RealMatrix result = new Array2DRowRealMatrix(p, 2);
        if (hasIntercept()) {
            result.setEntry(0, 0, betaVector.getEntry(0));      //Intercept coefficient
            result.setEntry(0, 1, covMatrix.getEntry(0, 0));    //Intercept variance
        }
        for (int i = 0; i < getRegressors().size(); i++) {
            final int index = i + offset;
            final double variance = covMatrix.getEntry(index, index);
            result.setEntry(index, 1, variance);
            result.setEntry(index, 0, betaVector.getEntry(index));
        }
        return result;
    }
}
 
開發者ID:zavtech,項目名稱:morpheus-core,代碼行數:36,代碼來源:XDataFrameLeastSquares.java

示例2: computeBetaQR

import org.apache.commons.math3.linear.RealVector; //導入方法依賴的package包/類
/**
 * Computes model parameters and parameter variance using a QR decomposition of the X matrix
 * @param y     the response vector
 * @param x     the design matrix
 */
private RealMatrix computeBetaQR(RealVector y, RealMatrix x) {
    final int n = x.getRowDimension();
    final int p = x.getColumnDimension();
    final int offset = hasIntercept() ? 1 : 0;
    final QRDecomposition decomposition = new QRDecomposition(x, threshold);
    final RealVector betaVector = decomposition.getSolver().solve(y);
    final RealVector residuals = y.subtract(x.operate(betaVector));
    this.rss = residuals.dotProduct(residuals);
    this.errorVariance = rss / (n - p);
    this.stdError = Math.sqrt(errorVariance);
    this.residuals = createResidualsFrame(residuals);
    final RealMatrix rAug = decomposition.getR().getSubMatrix(0, p - 1, 0, p - 1);
    final RealMatrix rInv = new LUDecomposition(rAug).getSolver().getInverse();
    final RealMatrix covMatrix = rInv.multiply(rInv.transpose()).scalarMultiply(errorVariance);
    final RealMatrix result = new Array2DRowRealMatrix(p, 2);
    if (hasIntercept()) {
        result.setEntry(0, 0, betaVector.getEntry(0));      //Intercept coefficient
        result.setEntry(0, 1, covMatrix.getEntry(0, 0));    //Intercept variance
    }
    for (int i = 0; i < getRegressors().size(); i++) {
        final int index = i + offset;
        final double variance = covMatrix.getEntry(index, index);
        result.setEntry(index, 1, variance);
        result.setEntry(index, 0, betaVector.getEntry(index));
    }
    return result;
}
 
開發者ID:zavtech,項目名稱:morpheus-core,代碼行數:33,代碼來源:XDataFrameLeastSquares.java

示例3: correct

import org.apache.commons.math3.linear.RealVector; //導入方法依賴的package包/類
/**
 * Correct the current state estimate with an actual measurement.
 *
 * @param z
 *            the measurement vector
 * @throws NullArgumentException
 *             if the measurement vector is {@code null}
 * @throws DimensionMismatchException
 *             if the dimension of the measurement vector does not fit
 * @throws SingularMatrixException
 *             if the covariance matrix could not be inverted
 */
public void correct(final RealVector z) throws NullArgumentException,
           DimensionMismatchException, SingularMatrixException
{

    // sanity checks
    MathUtils.checkNotNull(z);
    if (z.getDimension() != measurementMatrix.getRowDimension())
    {
        throw new DimensionMismatchException(z.getDimension(),
                measurementMatrix.getRowDimension());
    }

    // S = H * P(k) * H' + R
    RealMatrix s = measurementMatrix.multiply(errorCovariance)
            .multiply(measurementMatrixT)
            .add(measurementModel.getMeasurementNoise());

    // Inn = z(k) - H * xHat(k)-
    RealVector innovation = z.subtract(measurementMatrix
            .operate(stateEstimation));

    // calculate gain matrix
    // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
    // K(k) = P(k)- * H' * S^-1

    // instead of calculating the inverse of S we can rearrange the formula,
    // and then solve the linear equation A x X = B with A = S', X = K' and
    // B = (H * P)'

    // K(k) * S = P(k)- * H'
    // S' * K(k)' = H * P(k)-'
    RealMatrix kalmanGain = new CholeskyDecomposition(s).getSolver()
            .solve(measurementMatrix.multiply(errorCovariance.transpose()))
            .transpose();

    // update estimate with measurement z(k)
    // xHat(k) = xHat(k)- + K * Inn
    stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));

    // update covariance of prediction error
    // P(k) = (I - K * H) * P(k)-
    RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain
            .getRowDimension());
    errorCovariance = identity.subtract(
            kalmanGain.multiply(measurementMatrix)).multiply(
            errorCovariance);
}
 
開發者ID:KalebKE,項目名稱:FSensor,代碼行數:60,代碼來源:RotationKalmanFilter.java


注:本文中的org.apache.commons.math3.linear.RealVector.subtract方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。