當前位置: 首頁>>代碼示例>>Java>>正文


Java MatrixUtils.createColumnRealMatrix方法代碼示例

本文整理匯總了Java中org.apache.commons.math3.linear.MatrixUtils.createColumnRealMatrix方法的典型用法代碼示例。如果您正苦於以下問題:Java MatrixUtils.createColumnRealMatrix方法的具體用法?Java MatrixUtils.createColumnRealMatrix怎麽用?Java MatrixUtils.createColumnRealMatrix使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在org.apache.commons.math3.linear.MatrixUtils的用法示例。


在下文中一共展示了MatrixUtils.createColumnRealMatrix方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: setValues

import org.apache.commons.math3.linear.MatrixUtils; //導入方法依賴的package包/類
@Override
public void setValues(double[] y, double[] x) {
    if (x.length != y.length) {
        throw new IllegalArgumentException(String.format("The numbers of y and x values must be equal (%d != %d)", y.length, x.length));
    }
    double[][] xData = new double[x.length][];
    for (int i = 0; i < x.length; i++) {
        // the implementation determines how to produce a vector of predictors from a single x
        xData[i] = xVector(x[i]);
    }
    if (logY()) { // in some models we are predicting ln y, so we replace each y with ln y
        y = Arrays.copyOf(y, y.length); // user might not be finished with the array we were given
        for (int i = 0; i < x.length; i++) {
            y[i] = Math.log(y[i]);
        }
    }
    final OLSMultipleLinearRegression ols = new OLSMultipleLinearRegression();
    ols.setNoIntercept(true); // let the implementation include a constant in xVector if desired
    ols.newSampleData(y, xData); // provide the data to the model
    coef = MatrixUtils.createColumnRealMatrix(ols.estimateRegressionParameters()); // get our coefs
    last_error_rate = ols.estimateErrorVariance();
    Log.d(TAG, getClass().getSimpleName() + " Forecast Error rate: errorvar:"
            + JoH.qs(last_error_rate, 4)
            + " regssionvar:" + JoH.qs(ols.estimateRegressandVariance(), 4)
            + "  stderror:" + JoH.qs(ols.estimateRegressionStandardError(), 4));
}
 
開發者ID:NightscoutFoundation,項目名稱:xDrip,代碼行數:27,代碼來源:Forecast.java

示例2: calculateKernelVector

import org.apache.commons.math3.linear.MatrixUtils; //導入方法依賴的package包/類
private RealMatrix calculateKernelVector(final double[][] training,
        final double[] test, final KernelFunction kernelFunction) {
    final double[] result = new double[training.length];

    for (int r = 0; r < training.length; r++) {
        result[r] = kernelFunction.calculate(training[r], test);
    }
    return MatrixUtils.createColumnRealMatrix(result);
}
 
開發者ID:knime,項目名稱:knime-activelearning,代碼行數:10,代碼來源:KernelCalculator.java

示例3: HybridLinUCB

import org.apache.commons.math3.linear.MatrixUtils; //導入方法依賴的package包/類
public HybridLinUCB(double alpha) {
	this.alpha = alpha;
	AMap = new HashMap<String, RealMatrix>();
	bMap = new HashMap<String, RealMatrix>();
	BMap = new HashMap<String, RealMatrix>();

	// Need to double check that it is 6 long
	double[] zeroArrayKLong = new double[36];
	Double zero = new Double(0);
	Arrays.fill(zeroArrayKLong, zero);
	A0 = MatrixUtils.createRealIdentityMatrix(36);
	b0 = MatrixUtils.createColumnRealMatrix(zeroArrayKLong);
	BetaHat = MatrixUtils.inverse(A0).multiply(b0);

}
 
開發者ID:tankle,項目名稱:Bandit4J,代碼行數:16,代碼來源:HybridLinUCB.java

示例4: updateReward

import org.apache.commons.math3.linear.MatrixUtils; //導入方法依賴的package包/類
public void updateReward(User user, Article a, boolean clicked) {
	String aId = a.getId();
	// Collect Variables
	RealMatrix xta = MatrixUtils.createColumnRealMatrix(a.getFeatures());
	RealMatrix zta = makeZta(
			MatrixUtils.createColumnRealMatrix(user.getFeatures()), xta);

	RealMatrix Aa = AMap.get(aId);
	RealMatrix ba = bMap.get(aId);
	RealMatrix Ba = BMap.get(aId);

	// Find common transpose/inverse to save computation
	RealMatrix AaInverse = MatrixUtils.inverse(Aa);
	RealMatrix BaTranspose = Ba.transpose();
	RealMatrix xtaTranspose = xta.transpose();
	RealMatrix ztaTranspose = zta.transpose();

	// Update
	A0 = A0.add(BaTranspose.multiply(AaInverse).multiply(Ba));
	b0 = b0.add(BaTranspose.multiply(AaInverse).multiply(ba));
	Aa = Aa.add(xta.multiply(xtaTranspose));
	AMap.put(aId, Aa);
	Ba = Ba.add(xta.multiply(ztaTranspose));
	BMap.put(aId, Ba);
	if (clicked) {
		ba = ba.add(xta);
		bMap.put(aId, ba);
	}

	// Update A0 and b0 with the new values
	A0 = A0.add(zta.multiply(ztaTranspose)).subtract(
			Ba.transpose().multiply(MatrixUtils.inverse(Aa).multiply(Ba)));
	b0 = b0.subtract(Ba.transpose().multiply(MatrixUtils.inverse(Aa))
			.multiply(ba));
	if (clicked) {
		b0 = b0.add(zta);
	}
}
 
開發者ID:tankle,項目名稱:Bandit4J,代碼行數:39,代碼來源:HybridLinUCB.java

示例5: makeZta

import org.apache.commons.math3.linear.MatrixUtils; //導入方法依賴的package包/類
public RealMatrix makeZta(RealMatrix userFeature, RealMatrix articleFeature) {
	RealMatrix product = userFeature.multiply(articleFeature.transpose());
	double[][] productData = product.getData();
	double[] productVector = new double[36];
	int count = 0;
	for (int row = 0; row < 6; row++) {
		for (int col = 0; col < 6; col++) {
			productVector[count] = productData[row][col];
			count++;
		}
	}
	return MatrixUtils.createColumnRealMatrix(productVector);
}
 
開發者ID:tankle,項目名稱:Bandit4J,代碼行數:14,代碼來源:HybridLinUCB.java

示例6: updateReward

import org.apache.commons.math3.linear.MatrixUtils; //導入方法依賴的package包/類
public void updateReward(User user, Article a, boolean clicked) {
	String aId = a.getId();
	RealMatrix xta = MatrixUtils
			.createColumnRealMatrix(a.getFeatures());
	AMap.put(aId, AMap.get(aId).add(xta.multiply(xta.transpose())));
	if (clicked){
		bMap.put(aId, bMap.get(aId).add(xta));
	}
}
 
開發者ID:tankle,項目名稱:Bandit4J,代碼行數:10,代碼來源:LinUCB.java

示例7: setValues

import org.apache.commons.math3.linear.MatrixUtils; //導入方法依賴的package包/類
@Override
    public void setValues(Array y, Array x) {
        if (x.getSize() != y.getSize()) {
            throw new IllegalArgumentException(String.format("The numbers of y and x values must be equal (%d != %d)",y.getSize(),x.getSize()));
        }
        double[][] xData = new double[(int)x.getSize()][]; 
        for (int i = 0; i < x.getSize(); i++) {
            // the implementation determines how to produce a vector of predictors from a single x
            xData[i] = xVector(x.getDouble(i));
        }
        double[] yy = new double[(int)y.getSize()];
        if(logY()) { // in some models we are predicting ln y, so we replace each y with ln y
            for (int i = 0; i < yy.length; i++) {
                if (i < x.getSize())
                    yy[i] = Math.log(y.getDouble(i));
                else
                    yy[i] = y.getDouble(i);
            }
        } else {
            for (int i = 0; i < yy.length; i++) {
                yy[i] = y.getDouble(i);
            }
        }
//        double[] yy = (double[])y.copyTo1DJavaArray();
//        if(logY()) { // in some models we are predicting ln y, so we replace each y with ln y
//            yy = Arrays.copyOf(yy, yy.length); // user might not be finished with the array we were given
//            for (int i = 0; i < x.getSize(); i++) {
//                yy[i] = Math.log(yy[i]);
//            }
//        }
        OLSMultipleLinearRegression ols = new OLSMultipleLinearRegression();
        ols.setNoIntercept(true); // let the implementation include a constant in xVector if desired
        ols.newSampleData(yy, xData); // provide the data to the model
        coef = MatrixUtils.createColumnRealMatrix(ols.estimateRegressionParameters()); // get our coefs
        rs = ols.calculateRSquared();
    }
 
開發者ID:meteoinfo,項目名稱:MeteoInfoLib,代碼行數:37,代碼來源:OLSTrendLine.java

示例8: looPredLogLikelihood

import org.apache.commons.math3.linear.MatrixUtils; //導入方法依賴的package包/類
@Override
public double looPredLogLikelihood(){

	double[][] Y = getY();
	double[][] dY = getdY();
	double[][] mask = getMask();

	int ns = Y.length;
	int ny = Y[0].length;

	RealMatrix Ky = MatrixUtils.createRealMatrix(this.Ky);
	RealMatrix invK = new LUDecomposition(Ky).getSolver().getInverse();

	RealMatrix dYmat = MatrixUtils.createRealMatrix(dY);

	double[] LOOPredLL = new double[ny];
	for(int j=0;j<ny; j++){
		RealMatrix dy = MatrixUtils.createColumnRealMatrix(dYmat.getColumn(j));
		RealMatrix invKdy = invK.multiply(dy);
		double sum=0;
		for(int i=0; i<ns; i++){
			double mu_i = dYmat.getEntry(i, j) - invKdy.getEntry(i, 0)/invK.getEntry(i, i);
			double sigma_i2 = 1/invK.getEntry(i, i);
			double logLL = StatUtils.logProbaNormal(dYmat.getEntry(i, j), mu_i, Math.sqrt(sigma_i2));
			sum += logLL * mask[i][j];
		}
		LOOPredLL[j] = sum;
	}

	double sumLOOPredLL=0;
	for(int j=0;j<ny; j++){
		sumLOOPredLL += LOOPredLL[j];
	}

	return sumLOOPredLL;
}
 
開發者ID:hulop,項目名稱:BLELocalization,代碼行數:37,代碼來源:GaussianProcessLDPLMean.java

示例9: looPredLogLikelihood

import org.apache.commons.math3.linear.MatrixUtils; //導入方法依賴的package包/類
public double looPredLogLikelihood(){

		double[][] Y = getY();
		double[][] dY = getdY();

		int ns = X.length;
		int ny = Y[0].length;

		RealMatrix Ky = MatrixUtils.createRealMatrix(this.Ky);
		RealMatrix invKy = new LUDecomposition(Ky).getSolver().getInverse();

		RealMatrix dYmat = MatrixUtils.createRealMatrix(dY);

		double[] LOOPredLL = new double[ny];
		for(int j=0;j<ny; j++){
			RealMatrix dy = MatrixUtils.createColumnRealMatrix(dYmat.getColumn(j));
			RealMatrix invKdy = invKy.multiply(dy);
			double sum=0;
			for(int i=0; i<ns; i++){
				double mu_i = dYmat.getEntry(i, j) - invKdy.getEntry(i, 0)/invKy.getEntry(i, i);
				double sigma_i2 = 1/invKy.getEntry(i, i);
				double logLL = StatUtils.logProbaNormal(dYmat.getEntry(i, j), mu_i, Math.sqrt(sigma_i2));
				sum+=logLL;
			}
			LOOPredLL[j] = sum;
		}

		double sumLOOPredLL=0;
		for(int j=0;j<ny; j++){
			sumLOOPredLL += LOOPredLL[j];
		}

		return sumLOOPredLL;
	}
 
開發者ID:hulop,項目名稱:BLELocalization,代碼行數:35,代碼來源:GaussianProcess.java

示例10: chooseArm

import org.apache.commons.math3.linear.MatrixUtils; //導入方法依賴的package包/類
public Article chooseArm(User user, List<Article> articles) {
	Article bestA = null;
	double bestArmP = Double.MIN_VALUE;

	RealMatrix Aa;
	RealMatrix Ba;
	RealMatrix ba;

	for (Article a : articles) {
		String aId = a.getId();
		if (!AMap.containsKey(aId)) {
			Aa = MatrixUtils.createRealIdentityMatrix(6);
			AMap.put(aId, Aa); // set as identity for now and we will update
								// in reward

			double[] zeros = { 0, 0, 0, 0, 0, 0 };
			ba = MatrixUtils.createColumnRealMatrix(zeros);
			bMap.put(aId, ba);

			double[][] BMapZeros = new double[6][36];
			for (double[] row : BMapZeros) {
				Arrays.fill(row, 0.0);
			}
			Ba = MatrixUtils.createRealMatrix(BMapZeros);
			BMap.put(aId, Ba);
		} else {
			Aa = AMap.get(aId);
			ba = bMap.get(aId);
			Ba = BMap.get(aId);
		}

		// Make column vector out of features
		RealMatrix xta = MatrixUtils
				.createColumnRealMatrix(a.getFeatures());
		RealMatrix zta = makeZta(
				MatrixUtils.createColumnRealMatrix(user.getFeatures()), xta);

		// Set up common variables
		RealMatrix A0Inverse = MatrixUtils.inverse(A0);
		RealMatrix AaInverse = MatrixUtils.inverse(Aa);
		RealMatrix ztaTranspose = zta.transpose();
		RealMatrix BaTranspose = Ba.transpose();
		RealMatrix xtaTranspose = xta.transpose();

		// Find theta
		RealMatrix theta = AaInverse.multiply(ba.subtract(Ba
				.multiply(BetaHat)));
		// Find sta
		RealMatrix staMatrix = ztaTranspose.multiply(A0Inverse).multiply(
				zta);
		staMatrix = staMatrix.subtract(ztaTranspose.multiply(A0Inverse)
				.multiply(BaTranspose).multiply(AaInverse).multiply(xta)
				.scalarMultiply(2));
		staMatrix = staMatrix.add(xtaTranspose.multiply(AaInverse)
				.multiply(xta));
		staMatrix = staMatrix.add(xtaTranspose.multiply(AaInverse)
				.multiply(Ba).multiply(A0Inverse).multiply(BaTranspose)
				.multiply(AaInverse).multiply(xta));

		// Find pta for arm
		RealMatrix ptaMatrix = ztaTranspose.multiply(BetaHat);
		ptaMatrix = ptaMatrix.add(xtaTranspose.multiply(theta));
		double ptaVal = ptaMatrix.getData()[0][0];
		double staVal = staMatrix.getData()[0][0];
		ptaVal = ptaVal + alpha * Math.sqrt(staVal);

		// Update argmax
		if (ptaVal > bestArmP) {
			bestArmP = ptaVal;
			bestA = a;
		}
	}
	return bestA;
}
 
開發者ID:tankle,項目名稱:Bandit4J,代碼行數:75,代碼來源:HybridLinUCB.java

示例11: chooseArm

import org.apache.commons.math3.linear.MatrixUtils; //導入方法依賴的package包/類
public Article chooseArm(User user, List<Article> articles) {
	Article bestA = null;
	double bestArmP = Double.MIN_VALUE;
	RealMatrix Aa;
	RealMatrix ba;
	for (Article a : articles) {
		
		String aId = a.getId();
		double[] articleFeatureV = a.getFeatures();

		// If not contained, then make new identity matrix and zero vector
		if (!AMap.containsKey(aId)) {
			Aa = MatrixUtils
					.createRealIdentityMatrix(articleFeatureV.length);

			double[] zeros = new double[articleFeatureV.length];
			AMap.put(aId, Aa); //set as identity for now and we will update in reward
			ba = MatrixUtils.createColumnRealMatrix(zeros);
			bMap.put(aId, ba);
		} else {
			Aa = AMap.get(aId);
			ba = bMap.get(aId);
		}
		// Make column vector out of features
		RealMatrix xta = MatrixUtils
				.createColumnRealMatrix(articleFeatureV);
		RealMatrix theta = MatrixUtils.inverse(Aa).multiply(ba);
		// Will have to index into matrix of one value after multiplication
		double newP = theta.transpose().multiply(xta).getData()[0][0]
				+ alpha
				* Math.sqrt(xta.transpose()
						.multiply(MatrixUtils.inverse(Aa)).multiply(xta)
						.getData()[0][0]);
		// Update argmax
		if (newP > bestArmP) {
			bestArmP = newP;
			bestA = a;
		}
	}
	return bestA;
}
 
開發者ID:tankle,項目名稱:Bandit4J,代碼行數:42,代碼來源:LinUCB.java

示例12: setValues

import org.apache.commons.math3.linear.MatrixUtils; //導入方法依賴的package包/類
@Override
public void setValues(double[] yIn, double[] xIn) {
  if (xIn.length != yIn.length) {
    throw new IllegalArgumentException(String.format("The numbers of y and x values must be equal (%d != %d)",yIn.length,xIn.length));
  }

  ArrayList<Double> xArr = new ArrayList<>();
  ArrayList<Double> yArr = new ArrayList<>();
  Predicate<Double> dom = getDomainPredicate();
  Predicate<Double> ran = getRangePredicate();
  
  for(int i = 0; i < xIn.length; i++) {
    if(ran.apply(yIn[i]) && dom.apply(xIn[i])) {
      yArr.add(yIn[i]);
      xArr.add(xIn[i]);
    }
  }
  //todo: super ugly conversion back to arr of primitive type
  double[] x = new double[xArr.size()];
  double[] y = new double[xArr.size()];
  for(int i = 0; i< x.length; i++) {
    x[i] = xArr.get(i);
    y[i] = yArr.get(i);
  }
  
  double[][] xData = new double[x.length][]; 
  for (int i = 0; i < x.length; i++) {
    // the implementation determines how to produce a vector of predictors from a single x
    xData[i] = xVector(x[i]);
  }
  if(logY()) { // in some models we are predicting ln y, so we replace each y with ln y
    y = Arrays.copyOf(y, y.length); // user might not be finished with the array we were given
    for (int i = 0; i < x.length; i++) {
      y[i] = Math.log(y[i]);
    }
  }

  OLSMultipleLinearRegression ols = new OLSMultipleLinearRegression();
  ols.setNoIntercept(true); // let the implementation include a constant in xVector if desired
  ols.newSampleData(y, xData); // provide the data to the model
  coef = MatrixUtils.createColumnRealMatrix(ols.estimateRegressionParameters()); // get our coefs

  //set r^2
  this.RSquared = ols.calculateRSquared();
  this.adjustedRSquared = ols.calculateAdjustedRSquared();
}
 
開發者ID:isstac,項目名稱:spf-wca,代碼行數:47,代碼來源:OLSTrendLine.java

示例13: initializeCMA

import org.apache.commons.math3.linear.MatrixUtils; //導入方法依賴的package包/類
/**
 * Initialization of the dynamic search parameters
 *
 * @param guess Initial guess for the arguments of the fitness function.
 */
private void initializeCMA(double[] guess) {
    if (lambda <= 0) {
        // XXX Line below to replace the current one in 4.0 (MATH-879).
        // throw new NotStrictlyPositiveException(lambda);
        lambda = 4 + (int) (3 * FastMath.log(dimension));
    }
    // initialize sigma
    final double[][] sigmaArray = new double[guess.length][1];
    for (int i = 0; i < guess.length; i++) {
        // XXX Line below to replace the current one in 4.0 (MATH-868).
        // sigmaArray[i][0] = inputSigma[i];
        sigmaArray[i][0] = inputSigma == null ? 0.3 : inputSigma[i];
    }
    final RealMatrix insigma = new Array2DRowRealMatrix(sigmaArray, false);
    sigma = max(insigma); // overall standard deviation

    // initialize termination criteria
    stopTolUpX = 1e3 * max(insigma);
    stopTolX = 1e-11 * max(insigma);
    stopTolFun = 1e-12;
    stopTolHistFun = 1e-13;

    // initialize selection strategy parameters
    mu = lambda / 2; // number of parents/points for recombination
    logMu2 = FastMath.log(mu + 0.5);
    weights = log(sequence(1, mu, 1)).scalarMultiply(-1).scalarAdd(logMu2);
    double sumw = 0;
    double sumwq = 0;
    for (int i = 0; i < mu; i++) {
        double w = weights.getEntry(i, 0);
        sumw += w;
        sumwq += w * w;
    }
    weights = weights.scalarMultiply(1 / sumw);
    mueff = sumw * sumw / sumwq; // variance-effectiveness of sum w_i x_i

    // initialize dynamic strategy parameters and constants
    cc = (4 + mueff / dimension) /
            (dimension + 4 + 2 * mueff / dimension);
    cs = (mueff + 2) / (dimension + mueff + 3.);
    damps = (1 + 2 * FastMath.max(0, FastMath.sqrt((mueff - 1) /
                                                   (dimension + 1)) - 1)) *
        FastMath.max(0.3,
                     1 - dimension / (1e-6 + maxIterations)) + cs; // minor increment
    ccov1 = 2 / ((dimension + 1.3) * (dimension + 1.3) + mueff);
    ccovmu = FastMath.min(1 - ccov1, 2 * (mueff - 2 + 1 / mueff) /
                          ((dimension + 2) * (dimension + 2) + mueff));
    ccov1Sep = FastMath.min(1, ccov1 * (dimension + 1.5) / 3);
    ccovmuSep = FastMath.min(1 - ccov1, ccovmu * (dimension + 1.5) / 3);
    chiN = FastMath.sqrt(dimension) *
        (1 - 1 / ((double) 4 * dimension) + 1 / ((double) 21 * dimension * dimension));
    // intialize CMA internal values - updated each generation
    xmean = MatrixUtils.createColumnRealMatrix(guess); // objective variables
    diagD = insigma.scalarMultiply(1 / sigma);
    diagC = square(diagD);
    pc = zeros(dimension, 1); // evolution paths for C and sigma
    ps = zeros(dimension, 1); // B defines the coordinate system
    normps = ps.getFrobeniusNorm();

    B = eye(dimension, dimension);
    D = ones(dimension, 1); // diagonal D defines the scaling
    BD = times(B, repmat(diagD.transpose(), dimension, 1));
    C = B.multiply(diag(square(D)).multiply(B.transpose())); // covariance
    historySize = 10 + (int) (3 * 10 * dimension / (double) lambda);
    fitnessHistory = new double[historySize]; // history of fitness values
    for (int i = 0; i < historySize; i++) {
        fitnessHistory[i] = Double.MAX_VALUE;
    }
}
 
開發者ID:biocompibens,項目名稱:SME,代碼行數:75,代碼來源:CMAESOptimizer.java

示例14: initializeCMA

import org.apache.commons.math3.linear.MatrixUtils; //導入方法依賴的package包/類
/**
 * Initialization of the dynamic search parameters
 *
 * @param guess Initial guess for the arguments of the fitness function.
 */
private void initializeCMA(double[] guess) {
    if (lambda <= 0) {
        throw new NotStrictlyPositiveException(lambda);
    }
    // initialize sigma
    final double[][] sigmaArray = new double[guess.length][1];
    for (int i = 0; i < guess.length; i++) {
        sigmaArray[i][0] = inputSigma[i];
    }
    final RealMatrix insigma = new Array2DRowRealMatrix(sigmaArray, false);
    sigma = max(insigma); // overall standard deviation

    // initialize termination criteria
    stopTolUpX = 1e3 * max(insigma);
    stopTolX = 1e-11 * max(insigma);
    stopTolFun = 1e-12;
    stopTolHistFun = 1e-13;

    // initialize selection strategy parameters
    mu = lambda / 2; // number of parents/points for recombination
    logMu2 = FastMath.log(mu + 0.5);
    weights = log(sequence(1, mu, 1)).scalarMultiply(-1).scalarAdd(logMu2);
    double sumw = 0;
    double sumwq = 0;
    for (int i = 0; i < mu; i++) {
        double w = weights.getEntry(i, 0);
        sumw += w;
        sumwq += w * w;
    }
    weights = weights.scalarMultiply(1 / sumw);
    mueff = sumw * sumw / sumwq; // variance-effectiveness of sum w_i x_i

    // initialize dynamic strategy parameters and constants
    cc = (4 + mueff / dimension) /
            (dimension + 4 + 2 * mueff / dimension);
    cs = (mueff + 2) / (dimension + mueff + 3.);
    damps = (1 + 2 * FastMath.max(0, FastMath.sqrt((mueff - 1) /
                                                   (dimension + 1)) - 1)) *
        FastMath.max(0.3,
                     1 - dimension / (1e-6 + maxIterations)) + cs; // minor increment
    ccov1 = 2 / ((dimension + 1.3) * (dimension + 1.3) + mueff);
    ccovmu = FastMath.min(1 - ccov1, 2 * (mueff - 2 + 1 / mueff) /
                          ((dimension + 2) * (dimension + 2) + mueff));
    ccov1Sep = FastMath.min(1, ccov1 * (dimension + 1.5) / 3);
    ccovmuSep = FastMath.min(1 - ccov1, ccovmu * (dimension + 1.5) / 3);
    chiN = FastMath.sqrt(dimension) *
            (1 - 1 / ((double) 4 * dimension) + 1 / ((double) 21 * dimension * dimension));
    // intialize CMA internal values - updated each generation
    xmean = MatrixUtils.createColumnRealMatrix(guess); // objective variables
    diagD = insigma.scalarMultiply(1 / sigma);
    diagC = square(diagD);
    pc = zeros(dimension, 1); // evolution paths for C and sigma
    ps = zeros(dimension, 1); // B defines the coordinate system
    normps = ps.getFrobeniusNorm();

    B = eye(dimension, dimension);
    D = ones(dimension, 1); // diagonal D defines the scaling
    BD = times(B, repmat(diagD.transpose(), dimension, 1));
    C = B.multiply(diag(square(D)).multiply(B.transpose())); // covariance
    historySize = 10 + (int) (3 * 10 * dimension / (double) lambda);
    fitnessHistory = new double[historySize]; // history of fitness values
    for (int i = 0; i < historySize; i++) {
        fitnessHistory[i] = Double.MAX_VALUE;
    }
}
 
開發者ID:biocompibens,項目名稱:SME,代碼行數:71,代碼來源:CMAESOptimizer.java


注:本文中的org.apache.commons.math3.linear.MatrixUtils.createColumnRealMatrix方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。