本文整理匯總了Java中org.apache.commons.math3.linear.Array2DRowRealMatrix.getDataRef方法的典型用法代碼示例。如果您正苦於以下問題:Java Array2DRowRealMatrix.getDataRef方法的具體用法?Java Array2DRowRealMatrix.getDataRef怎麽用?Java Array2DRowRealMatrix.getDataRef使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.commons.math3.linear.Array2DRowRealMatrix
的用法示例。
在下文中一共展示了Array2DRowRealMatrix.getDataRef方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: calculateHat
import org.apache.commons.math3.linear.Array2DRowRealMatrix; //導入方法依賴的package包/類
/**
* <p>Compute the "hat" matrix.
* </p>
* <p>The hat matrix is defined in terms of the design matrix X
* by X(X<sup>T</sup>X)<sup>-1</sup>X<sup>T</sup>
* </p>
* <p>The implementation here uses the QR decomposition to compute the
* hat matrix as Q I<sub>p</sub>Q<sup>T</sup> where I<sub>p</sub> is the
* p-dimensional identity matrix augmented by 0's. This computational
* formula is from "The Hat Matrix in Regression and ANOVA",
* David C. Hoaglin and Roy E. Welsch,
* <i>The American Statistician</i>, Vol. 32, No. 1 (Feb., 1978), pp. 17-22.
* </p>
* <p>Data for the model must have been successfully loaded using one of
* the {@code newSampleData} methods before invoking this method; otherwise
* a {@code NullPointerException} will be thrown.</p>
*
* @return the hat matrix
* @throws NullPointerException unless method {@code newSampleData} has been
* called beforehand.
*/
public RealMatrix calculateHat() {
// Create augmented identity matrix
RealMatrix Q = qr.getQ();
final int p = qr.getR().getColumnDimension();
final int n = Q.getColumnDimension();
// No try-catch or advertised NotStrictlyPositiveException - NPE above if n < 3
Array2DRowRealMatrix augI = new Array2DRowRealMatrix(n, n);
double[][] augIData = augI.getDataRef();
for (int i = 0; i < n; i++) {
for (int j =0; j < n; j++) {
if (i == j && i < p) {
augIData[i][j] = 1d;
} else {
augIData[i][j] = 0d;
}
}
}
// Compute and return Hat matrix
// No DME advertised - args valid if we get here
return Q.multiply(augI).multiply(Q.transpose());
}
示例2: fastMultiply
import org.apache.commons.math3.linear.Array2DRowRealMatrix; //導入方法依賴的package包/類
private void fastMultiply(final Array2DRowRealMatrix mat, final double[] v, final double[] out) {
final int n = v.length;
for (int row = 0; row < n; row++) {
final double[] dataRow = mat.getDataRef()[row];
double sum = 0;
for (int i = 0; i < n; i++) {
sum += dataRow[i] * v[i];
}
out[row] = sum;
}
}
示例3: fastMultiply
import org.apache.commons.math3.linear.Array2DRowRealMatrix; //導入方法依賴的package包/類
private static void fastMultiply(final Array2DRowRealMatrix mat, final double[] v, final double[] out) {
final int n = v.length;
for (int row = 0; row < n; row++) {
final double[] dataRow = mat.getDataRef()[row];
double sum = 0;
for (int i = 0; i < n; i++) {
sum += dataRow[i] * v[i];
}
out[row] = sum;
}
}
示例4: updateHighOrderDerivativesPhase2
import org.apache.commons.math3.linear.Array2DRowRealMatrix; //導入方法依賴的package包/類
/** Update the high order scaled derivatives Adams integrators (phase 2).
* <p>The complete update of high order derivatives has a form similar to:
* <pre>
* r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub>
* </pre>
* this method computes the (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u part.</p>
* <p>Phase 1 of the update must already have been performed.</p>
* @param start first order scaled derivatives at step start
* @param end first order scaled derivatives at step end
* @param highOrder high order scaled derivatives, will be modified
* (h<sup>2</sup>/2 y'', ... h<sup>k</sup>/k! y(k))
* @see #updateHighOrderDerivativesPhase1(Array2DRowRealMatrix)
*/
public void updateHighOrderDerivativesPhase2(final double[] start,
final double[] end,
final Array2DRowRealMatrix highOrder) {
final double[][] data = highOrder.getDataRef();
for (int i = 0; i < data.length; ++i) {
final double[] dataI = data[i];
final double c1I = c1[i];
for (int j = 0; j < dataI.length; ++j) {
dataI[j] += c1I * (start[j] - end[j]);
}
}
}