本文整理匯總了Java中org.apache.commons.lang.ArrayUtils.addAll方法的典型用法代碼示例。如果您正苦於以下問題:Java ArrayUtils.addAll方法的具體用法?Java ArrayUtils.addAll怎麽用?Java ArrayUtils.addAll使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.commons.lang.ArrayUtils
的用法示例。
在下文中一共展示了ArrayUtils.addAll方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: generateBubiPriKey
import org.apache.commons.lang.ArrayUtils; //導入方法依賴的package包/類
/**
* 根據ED25519算法生成的私鑰進行加工,從而得到布比私鑰
* 1.將3字節前綴和1字節版本號0XDA379F01加到P前麵,1字節壓縮標誌添加到P後麵即 M=0XDA379F01 + P+0X00
* 2.將M用SHA256計算兩次取前4字節,即Checksum=SHA256(SHA256(M)) 的前4字節
* 3.將Checksum的前四字節加到M後麵,即S=M+Checksum
* 4.對S進行Base58編碼即得到布比私鑰。privxxxxxxxxxxxxxxxxxxxxxxxx
*
* @param priKey
* @return
*/
private static String generateBubiPriKey(EdDSAPrivateKey priKey){
try {
byte[] priKeyheadArr = Utils.hexToBytes("DA379F01");
byte[] M = ArrayUtils.addAll(priKeyheadArr, priKey.getSeed());
byte[] priKeyendArr = Utils.hexToBytes("00");
M = ArrayUtils.addAll(M, priKeyendArr);
MessageDigest md = MessageDigest.getInstance("SHA-256");
md.update(M);
byte[] m_256_1 = md.digest();
md.update(m_256_1);
byte[] m_256_2 = md.digest();
byte[] M_check = new byte[M.length + 4];
System.arraycopy(M, 0, M_check, 0, M.length);
System.arraycopy(m_256_2, 0, M_check, M.length, 4);
return Base58Utils.encode(M_check);
} catch (NoSuchAlgorithmException e) {
throw new RuntimeException("Error occured on generating BubiAddress!--" + e.getMessage(), e);
}
}
示例2: getInventoryManifestMD5Mismatch
import org.apache.commons.lang.ArrayUtils; //導入方法依賴的package包/類
@Test (expected = ChecksumMismatchException.class)
public void getInventoryManifestMD5Mismatch() throws Exception {
InventoryManifest expectedManifest = manifest();
byte[] expectedManifestBytes = manifestBytes(expectedManifest);
byte[] errorBytes = "ERROR".getBytes();
byte[] wrongManifestBytes = ArrayUtils.addAll(expectedManifestBytes, errorBytes);
when(mockS3JsonObject.getObjectContent()).thenReturn(new S3ObjectInputStream(
new ByteArrayInputStream(wrongManifestBytes), null));
String expectedChecksum = "37289f10a76751046658f6c5e0ab41d9";
byte[] expectedChecksumBytes = expectedChecksum.getBytes(StandardCharsets.UTF_8);
when(mockS3ChecksumObject.getObjectContent()).thenReturn(new S3ObjectInputStream(
new ByteArrayInputStream(expectedChecksumBytes), null));
when(mockS3Client.getObject(getObjectRequestCaptor.capture())).
thenReturn(mockS3JsonObject)
.thenReturn(mockS3ChecksumObject);
retriever.getInventoryManifest();
}
示例3: getSynsetsFromWord
import org.apache.commons.lang.ArrayUtils; //導入方法依賴的package包/類
/**
* Extract from WordNet Database the synsets of a word
* @param wnDatabase WordNet Database
* @param word The word that we want to extract its synsets
* @param synsetType POS Tag of the word
* @return Array of Synsets
*/
public static Synset[] getSynsetsFromWord(WordNetDatabase wnDatabase, String word, SynsetType synsetType) {
Synset[] tmpSynsets;
if(synsetType == null)
tmpSynsets = wnDatabase.getSynsets(word);
else {
tmpSynsets = wnDatabase.getSynsets(word, synsetType);
// If the synset type is an adjective, check for adjective satellite too
if (synsetType == SynsetType.ADJECTIVE) {
tmpSynsets = (Synset[])ArrayUtils.addAll(tmpSynsets, wnDatabase.getSynsets(word, SynsetType.ADJECTIVE_SATELLITE));
}
}
return tmpSynsets;
}
示例4: tranformOneInstanceToBaseLearnerRegressionDataset
import org.apache.commons.lang.ArrayUtils; //導入方法依賴的package包/類
/**
* It transform one instance of the Object Ranking dataset to {@link BaselearnerDataset} for
* running regression.
*
* @param objectRankingInstance the object ranking instance to be used for transformation
* @return the base learner dataset to be used for learning the linear regression function
*/
public static BaselearnerDataset tranformOneInstanceToBaseLearnerRegressionDataset(ObjectRankingInstance objectRankingInstance) {
Ranking ranking = objectRankingInstance.getRating();
int numOfObjectsInPartialOrder = ranking.getObjectList().length;
int numberOfFeatures = objectRankingInstance.getNumofItemFeatures();
int numberOfContextFeatures = objectRankingInstance.getNumberOfContextsFeatures();
BaselearnerDataset transformedDataset = new BaselearnerDataset(numOfObjectsInPartialOrder,
numberOfFeatures + numberOfContextFeatures);
double rank = 1;
for (int obj : ranking.getObjectList()) {
double expectedRank = rank / (numOfObjectsInPartialOrder + 1);
double[] features = ArrayUtils.addAll(objectRankingInstance.getContextFeatureVector(),
objectRankingInstance.getFeaturesForItem(obj));
BaselearnerInstance instance = new BaselearnerInstance(features, expectedRank);
transformedDataset.addInstance(instance);
rank++;
}
return transformedDataset;
}
開發者ID:Intelligent-Systems-Group,項目名稱:jpl-framework,代碼行數:27,代碼來源:RankingRegressionTransformerUtils.java
示例5: listTables
import org.apache.commons.lang.ArrayUtils; //導入方法依賴的package包/類
@Override
public List<SchemaTableName> listTables(ConnectorSession connectorSession, String s)
{
log.info("INFORMATION: AmpoolMetadata listTables() called.");
if (s == null) {
return listTables(connectorSession, "ampool");
}
String[] fTableNames = ampoolClient.getAdmin().listFTableNames();
String[] mTableNames = ampoolClient.getAdmin().listMTableNames();
String[] tableNames = (String[]) ArrayUtils.addAll(fTableNames, mTableNames);
ImmutableList.Builder<SchemaTableName> tables = ImmutableList.builder();
for (String n : tableNames)
{
tables.add(new SchemaTableName("ampool", n));
}
return tables.build();
}
示例6: RWQueueRpcExecutor
import org.apache.commons.lang.ArrayUtils; //導入方法依賴的package包/類
public RWQueueRpcExecutor(final String name, final int handlerCount, final int numQueues,
final float readShare, final float scanShare, final int maxQueueLength,
final Configuration conf, final Abortable abortable,
final Class<? extends BlockingQueue> readQueueClass, Object... readQueueInitArgs) {
this(name, calcNumWriters(handlerCount, readShare), calcNumReaders(handlerCount, readShare),
calcNumWriters(numQueues, readShare), calcNumReaders(numQueues, readShare), scanShare,
LinkedBlockingQueue.class, new Object[] {maxQueueLength},
readQueueClass, ArrayUtils.addAll(new Object[] {maxQueueLength}, readQueueInitArgs));
}
示例7: loadProperties
import org.apache.commons.lang.ArrayUtils; //導入方法依賴的package包/類
/**
*
* loading the properties files without open jon file
* @param jobFile job file path
*/
public void loadProperties(IFile jobFile) {
List<File> paramNameList = null;
IProject activeProject = jobFile.getProject();
final File globalparamFilesPath = new File(activeProject.getLocation().toString() + "/" + "globalparam");
final File localParamFilePath = new File(activeProject.getLocation().toString() + "/" + Constants.PARAM_FOLDER);
File[] files = (File[]) ArrayUtils.addAll(listFilesForFolder(globalparamFilesPath),
getJobsPropertyFile(localParamFilePath, jobFile));
if (files != null) {
paramNameList = Arrays.asList(files);
getParamMap(paramNameList, jobFile);
}
}
示例8: getResourceAddress
import org.apache.commons.lang.ArrayUtils; //導入方法依賴的package包/類
public static final String getResourceAddress(boolean isFromGameResourceInput, String... fileResourcePathComponents)
{
if (isFromGameResourceInput)
{
final String[] inputGameResourceArray = {BuenOjoFileUtils.GAME_RESOURCES_INPUT_DIR};
fileResourcePathComponents = (String[]) ArrayUtils.addAll(inputGameResourceArray, fileResourcePathComponents);
}
return getResourceAddress(fileResourcePathComponents);
}
示例9: setPortId
import org.apache.commons.lang.ArrayUtils; //導入方法依賴的package包/類
public void setPortId(final int portNumber) {
byte[] port = ArrayUtils.addAll(new byte[] {PORT_TLV_SUBTYPE},
ByteBuffer.allocate(4).putInt(portNumber).array());
LLDPTLV portTLV = new LLDPTLV();
portTLV.setLength(PORT_TLV_SIZE);
portTLV.setType(PORT_TLV_TYPE);
portTLV.setValue(port);
this.setPortId(portTLV);
}
示例10: transformInstanceToPairswisePreferencesClassifcationDataset
import org.apache.commons.lang.ArrayUtils; //導入方法依賴的package包/類
/**
* The method to transform the provided {@link ObjectRankingInstance} to classifier
* {@link BaselearnerDataset}. This function takes one ranking and generate all possible
* combinations of pair wise preferences. Suppose if x1 is ranked before x2 then it creates an
* instance with weights (features(x1-x2)) and class as 1. or an instance with weights
* (features(x2-x1)) and class -1. The output dataset contains balanced classes, i.e. there are
* the same number of -1 as +1
*
* @param objectRankingInstance the dataset to be transformed
* @return the transformed base learner dataset
*/
public static BaselearnerDataset transformInstanceToPairswisePreferencesClassifcationDataset(
ObjectRankingInstance objectRankingInstance) {
int[] objects = objectRankingInstance.getRating().getObjectList();
List<Integer> listOfIndexes = CollectionsUtils.createListOfIndexesForProvidedNumber(objects.length);
List<Integer[]> combination = PermuatorCombinator.getCombinationsnCr(listOfIndexes, 2);
int numberOfItemFeatures = objectRankingInstance.getNumofItemFeatures();
int numberOfContextFeatures = objectRankingInstance.getNumberOfContextsFeatures();
BaselearnerDataset transformedDataset = new BaselearnerDataset(combination.size(), numberOfItemFeatures + numberOfContextFeatures);
int k = 1;
double[] contextFeatures = objectRankingInstance.getContextFeatureVector();
for (Integer[] obj : combination) {
double[] itemFeaturesForObjectOne = objectRankingInstance.getFeaturesForItem(objects[obj[0]]);
double[] itemFeaturesForObjectTwo = objectRankingInstance.getFeaturesForItem(objects[obj[1]]);
DenseDoubleVector featureVector = new DenseDoubleVector(itemFeaturesForObjectOne);
featureVector.subtractVector(itemFeaturesForObjectTwo);
double classValue = Math.signum(obj[1] - (double) obj[0]);
if (Double.compare(classValue, Math.pow(-1, k)) != 0) {
featureVector.multiplyByConstant(-1);
classValue = classValue * -1;
}
BaselearnerInstance instance = new BaselearnerInstance(ArrayUtils.addAll(contextFeatures, featureVector.asArray()), classValue);
transformedDataset.addInstance(instance);
k++;
}
return transformedDataset;
}
開發者ID:Intelligent-Systems-Group,項目名稱:jpl-framework,代碼行數:39,代碼來源:PairwiseRankingTransformerUtils.java
示例11: transformInstanceToOrderedPairwiseClassificationDataset
import org.apache.commons.lang.ArrayUtils; //導入方法依賴的package包/類
/**
* The method to transform the provided {@link ObjectRankingInstance} to classifier
* {@link BaselearnerDataset}.A threshold point say t. which is determined by this value t =
* thresholdPercentage*numberofrankedobjects in an ranking. Then all objects ranked before t are
* classified as +1 while others as -1.
*
* @param objectRankingInstance the dataset to be transformed
* @param minimumThresholdRank the minimum threshold rank for which the dataset has to be created
* @param lambda the lamda value for order-svm for regularizers
* @return the transformed base learner dataset
*/
public static BaselearnerDataset transformInstanceToOrderedPairwiseClassificationDataset(ObjectRankingInstance objectRankingInstance,
int minimumThresholdRank, double lambda) {
int[] objects = objectRankingInstance.getRating().getObjectList();
int numberOfItemFeatures = objectRankingInstance.getNumofItemFeatures();
int numberOfContextFeatures = objectRankingInstance.getNumberOfContextsFeatures();
int totalNumOfObjectFeatures = numberOfItemFeatures + numberOfContextFeatures;
int numbderOfFeaturesForBaseLearnerDataset = minimumThresholdRank * (totalNumOfObjectFeatures + 1) - 1;
BaselearnerDataset transformedDataset = new BaselearnerDataset(objects.length * (minimumThresholdRank - 1),
numbderOfFeaturesForBaseLearnerDataset);
double[] contextFeatures = objectRankingInstance.getContextFeatureVector();
double constant = Math.sqrt((lambda * totalNumOfObjectFeatures) / 2);
for (int thresholdRank = 1; thresholdRank < minimumThresholdRank; thresholdRank++) {
int rank = 1;
for (int obj : objects) {
double classValue = Math.signum((float) thresholdRank - (float) rank);
if (thresholdRank == rank)
classValue = 1.0;
double[] itemFeaturesForObjectOne = objectRankingInstance.getFeaturesForItem(obj);
double[] feature = ArrayUtils.addAll(contextFeatures, itemFeaturesForObjectOne);
double[] bias = new double[minimumThresholdRank - 1];
Arrays.fill(bias, 0.0);
bias[thresholdRank - 1] = 1;
double[] vtFeatures = new double[totalNumOfObjectFeatures * (minimumThresholdRank - 1)];
for (int i = totalNumOfObjectFeatures * (thresholdRank - 1); i < totalNumOfObjectFeatures * thresholdRank; i++) {
vtFeatures[i] = constant * feature[i - totalNumOfObjectFeatures * (thresholdRank - 1)];
}
BaselearnerInstance instance = new BaselearnerInstance(ArrayUtils.addAll(ArrayUtils.addAll(feature, bias), vtFeatures),
classValue);
transformedDataset.addInstance(instance);
rank++;
}
}
return transformedDataset;
}
開發者ID:Intelligent-Systems-Group,項目名稱:jpl-framework,代碼行數:46,代碼來源:PairwiseRankingTransformerUtils.java
示例12: getBases
import org.apache.commons.lang.ArrayUtils; //導入方法依賴的package包/類
/**
* The base sequence for this path. Pull the full sequence for source nodes and then the suffix for all subsequent nodes
* @return non-null sequence of bases corresponding to this path
*/
public byte[] getBases() {
if( getEdges().isEmpty() ) { return graph.getAdditionalSequence(lastVertex); }
byte[] bases = graph.getAdditionalSequence(graph.getEdgeSource(edgesInOrder.get(0)));
for( final E e : edgesInOrder ) {
bases = ArrayUtils.addAll(bases, graph.getAdditionalSequence(graph.getEdgeTarget(e)));
}
return bases;
}
示例13: checkAdditionalProperties
import org.apache.commons.lang.ArrayUtils; //導入方法依賴的package包/類
private void checkAdditionalProperties() {
if (!additionalPropertiesLoaded) {
checkLocalProperties();
if (additionalBeanClass != null) {
try {
properties = (PropertyDescriptor[]) ArrayUtils.addAll(properties, CachedIntrospector
.getBeanInfo(additionalBeanClass).getPropertyDescriptors());
} catch (IntrospectionException e) {
}
}
additionalPropertiesLoaded = true;
}
}
示例14: getIncompatibleVersionChanges
import org.apache.commons.lang.ArrayUtils; //導入方法依賴的package包/類
@Override
public OperatorVersion[] getIncompatibleVersionChanges() {
return (OperatorVersion[]) ArrayUtils.addAll(super.getIncompatibleVersionChanges(), new OperatorVersion[] {
VERSION_5_1_6, VERSION_5_2_8, VERSION_6_0_6 });
}
示例15: getAllMethods
import org.apache.commons.lang.ArrayUtils; //導入方法依賴的package包/類
public static Method[] getAllMethods(Class<?> aClass) {
return (Method[]) ArrayUtils.addAll(aClass.getMethods(), aClass.getDeclaredMethods());
}