當前位置: 首頁>>代碼示例>>Java>>正文


Java ECPoint.getAffineX方法代碼示例

本文整理匯總了Java中java.security.spec.ECPoint.getAffineX方法的典型用法代碼示例。如果您正苦於以下問題:Java ECPoint.getAffineX方法的具體用法?Java ECPoint.getAffineX怎麽用?Java ECPoint.getAffineX使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在java.security.spec.ECPoint的用法示例。


在下文中一共展示了ECPoint.getAffineX方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: checkPointOnCurve

import java.security.spec.ECPoint; //導入方法依賴的package包/類
/**
 * Checks that a point is on a given elliptic curve. This method implements the partial public key
 * validation routine from Section 5.6.2.6 of NIST SP 800-56A
 * http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf A partial
 * public key validation is sufficient for curves with cofactor 1. See Section B.3 of
 * http://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf The point validations above are
 * taken from recommendations for ECDH, because parameter checks in ECDH are much more important
 * than for the case of ECDSA. Performing this test for ECDSA keys is mainly a sanity check.
 *
 * @param point the point that needs verification
 * @param ec the elliptic curve. This must be a curve over a prime order field.
 * @throws GeneralSecurityException if the field is binary or if the point is not on the curve.
 */
public static void checkPointOnCurve(ECPoint point, EllipticCurve ec)
    throws GeneralSecurityException {
  BigInteger p = getModulus(ec);
  BigInteger x = point.getAffineX();
  BigInteger y = point.getAffineY();
  if (x == null || y == null) {
    throw new GeneralSecurityException("point is at infinity");
  }
  // Check 0 <= x < p and 0 <= y < p.
  if (x.signum() == -1 || x.compareTo(p) != -1) {
    throw new GeneralSecurityException("x is out of range");
  }
  if (y.signum() == -1 || y.compareTo(p) != -1) {
    throw new GeneralSecurityException("y is out of range");
  }
  // Check y^2 == x^3 + a x + b (mod p)
  BigInteger lhs = y.multiply(y).mod(p);
  BigInteger rhs = x.multiply(x).add(ec.getA()).multiply(x).add(ec.getB()).mod(p);
  if (!lhs.equals(rhs)) {
    throw new GeneralSecurityException("Point is not on curve");
  }
}
 
開發者ID:google,項目名稱:wycheproof,代碼行數:36,代碼來源:EcUtil.java

示例2: getWeakPublicKey

import java.security.spec.ECPoint; //導入方法依賴的package包/類
/**
 * Returns a weak public key of order 3 such that the public key point is on the curve specified
 * in ecParams. This method is used to check ECC implementations for missing step in the
 * verification of the public key. E.g. implementations of ECDH must verify that the public key
 * contains a point on the curve as well as public and secret key are using the same curve.
 *
 * @param ecParams the parameters of the key to attack. This must be a curve in Weierstrass form
 *     over a prime order field.
 * @return a weak EC group with a genrator of order 3.
 */
public static ECPublicKeySpec getWeakPublicKey(ECParameterSpec ecParams)
    throws GeneralSecurityException {
  EllipticCurve curve = ecParams.getCurve();
  KeyPairGenerator keyGen = KeyPairGenerator.getInstance("EC");
  keyGen.initialize(ecParams);
  BigInteger p = getModulus(curve);
  BigInteger three = new BigInteger("3");
  while (true) {
    // Generate a point on the original curve
    KeyPair keyPair = keyGen.generateKeyPair();
    ECPublicKey pub = (ECPublicKey) keyPair.getPublic();
    ECPoint w = pub.getW();
    BigInteger x = w.getAffineX();
    BigInteger y = w.getAffineY();
    // Find the curve parameters a,b such that 3*w = infinity.
    // This is the case if the following equations are satisfied:
    //    3x == l^2 (mod p)
    //    l == (3x^2 + a) / 2*y (mod p)
    //    y^2 == x^3 + ax + b (mod p)
    BigInteger l;
    try {
      l = modSqrt(x.multiply(three), p);
    } catch (GeneralSecurityException ex) {
      continue;
    }
    BigInteger xSqr = x.multiply(x).mod(p);
    BigInteger a = l.multiply(y.add(y)).subtract(xSqr.multiply(three)).mod(p);
    BigInteger b = y.multiply(y).subtract(x.multiply(xSqr.add(a))).mod(p);
    EllipticCurve newCurve = new EllipticCurve(curve.getField(), a, b);
    // Just a sanity check.
    checkPointOnCurve(w, newCurve);
    // Cofactor and order are of course wrong.
    ECParameterSpec spec = new ECParameterSpec(newCurve, w, p, 1);
    return new ECPublicKeySpec(w, spec);
  }
}
 
開發者ID:google,項目名稱:wycheproof,代碼行數:47,代碼來源:EcUtil.java

示例3: main

import java.security.spec.ECPoint; //導入方法依賴的package包/類
public static void main(String[] args) throws Exception {
	
	
	KeyPairGenerator kpg = KeyPairGenerator.getInstance("EC");
    ECGenParameterSpec gps = new ECGenParameterSpec ("secp256r1"); // NIST P-256 
    kpg.initialize(gps); 
    KeyPair apair = kpg.generateKeyPair(); 
    ECPublicKey apub  = (ECPublicKey)apair.getPublic();
    ECParameterSpec aspec = apub.getParams();
    // could serialize aspec for later use (in compatible JRE)
    //
    // for test only reuse bogus pubkey, for real substitute values 
    ECPoint apoint = apub.getW();
    BigInteger x = apoint.getAffineX(), y = apoint.getAffineY();
    // construct point plus params to pubkey
    ECPoint bpoint = new ECPoint (x,y); 
    ECPublicKeySpec bpubs = new ECPublicKeySpec (bpoint, aspec);
    KeyFactory kfa = KeyFactory.getInstance ("EC");
    ECPublicKey bpub = (ECPublicKey) kfa.generatePublic(bpubs);
    
    new Ssh2EcdsaSha2NistPublicKey(bpub);
}
 
開發者ID:sshtools,項目名稱:j2ssh-maverick,代碼行數:23,代碼來源:Ssh2EcdsaSha2NistPublicKey.java

示例4: checkPointOnCurve

import java.security.spec.ECPoint; //導入方法依賴的package包/類
/**
 * Checks that a point is on a given elliptic curve.
 *
 * <p><b>Warning:</b> Please use {@link #validatePublicKey} if you want to validate a public key
 * to avoid invalid curve attacks or small subgroup attacks in ECDH.
 *
 * <p>This method implements the partial public key validation routine from Section 5.6.2.6 of <a
 * href="http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf">NIST SP
 * 800-56A</a>. A partial public key validation is sufficient for curves with cofactor 1. See
 * Section B.3 of http://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf.
 *
 * <p>The point validations above are taken from recommendations for ECDH, because parameter
 * checks in ECDH are much more important than for the case of ECDSA. Performing this test for
 * ECDSA keys is mainly a sanity check.
 *
 * @param point the point that needs verification
 * @param ec the elliptic curve. This must be a curve over a prime order field.
 * @throws GeneralSecurityException if the field is binary or if the point is not on the curve.
 */
static void checkPointOnCurve(ECPoint point, EllipticCurve ec) throws GeneralSecurityException {
  BigInteger p = getModulus(ec);
  BigInteger x = point.getAffineX();
  BigInteger y = point.getAffineY();
  if (x == null || y == null) {
    throw new GeneralSecurityException("point is at infinity");
  }
  // Check 0 <= x < p and 0 <= y < p.
  if (x.signum() == -1 || x.compareTo(p) != -1) {
    throw new GeneralSecurityException("x is out of range");
  }
  if (y.signum() == -1 || y.compareTo(p) != -1) {
    throw new GeneralSecurityException("y is out of range");
  }
  // Check y^2 == x^3 + a x + b (mod p)
  BigInteger lhs = y.multiply(y).mod(p);
  BigInteger rhs = x.multiply(x).add(ec.getA()).multiply(x).add(ec.getB()).mod(p);
  if (!lhs.equals(rhs)) {
    throw new GeneralSecurityException("Point is not on curve");
  }
}
 
開發者ID:google,項目名稱:tink,代碼行數:41,代碼來源:EllipticCurves.java

示例5: PointMul

import java.security.spec.ECPoint; //導入方法依賴的package包/類
private static ECPoint PointMul(BigInteger k, ECPoint pt, EllipticCurve curve) {
	int len = k.bitLength();
	ECPoint Q = new ECPoint(pt.getAffineX(), pt.getAffineY());

	for (int i = len - 2; i >= 0; i--) {
		Q = PointAdd(Q, Q, curve);
		if (k.testBit(i)) {
			Q = PointAdd(Q, pt, curve);
		}
	}
	return Q;
}
 
開發者ID:bubicn,項目名稱:bubichain-sdk-java,代碼行數:13,代碼來源:Sm2Key.java

示例6: testGetAffineX01

import java.security.spec.ECPoint; //導入方法依賴的package包/類
/**
 * Test #1 for <code>getAffineX()</code> method<br>
 * Assertion: returns affine <code>x</code> coordinate<br>
 * Test preconditions: <code>ECPoint</code> instance
 * created using valid parameters<br>
 * Expected: must return affine <code>x</code> coordinate
 * which is equal to the one passed to the constructor;
 * (both must refer the same object)
 */
@TestTargetNew(
    level = TestLevel.PARTIAL_COMPLETE,
    notes = "Verifies positive case.",
    method = "getAffineX",
    args = {}
)
public final void testGetAffineX01() {
    BigInteger x = BigInteger.valueOf(-23456L);
    ECPoint p = new ECPoint(x, BigInteger.valueOf(23456L));
    BigInteger xRet = p.getAffineX();
    assertEquals(x, xRet);
    assertSame(x, xRet);
}
 
開發者ID:keplersj,項目名稱:In-the-Box-Fork,代碼行數:23,代碼來源:ECPointTest.java

示例7: fromJavaKey

import java.security.spec.ECPoint; //導入方法依賴的package包/類
public static SigningPublicKey fromJavaKey(ECPublicKey pk, SigType type)
                          throws GeneralSecurityException {
    ECPoint w = pk.getW();
    BigInteger x = w.getAffineX();
    BigInteger y = w.getAffineY();
    int len = type.getPubkeyLen();
    byte[] b = combine(x, y, len);
    return new SigningPublicKey(type, b);
}
 
開發者ID:NoYouShutup,項目名稱:CryptMeme,代碼行數:10,代碼來源:SigUtil.java

示例8: Sign

import java.security.spec.ECPoint; //導入方法依賴的package包/類
public byte[] Sign(byte[] id, byte[] msg) {
	// 得到M^ = ZA||M
	ECPoint pA = PointMul(dA_, spec_.getGenerator(), spec_.getCurve());

	byte[] ZA = GetZA(spec_, pA, id);

	// System.out.println("ZA=" + bytesToHex(ZA));

	byte[] M = new byte[msg.length + ZA.length];
	System.arraycopy(ZA, 0, M, 0, ZA.length);
	System.arraycopy(msg, 0, M, ZA.length, msg.length);

	// 第二步 e=Hv(M^)
	byte[] ebytes = SM3Digest.Hash(M);

	BigInteger e = new BigInteger(bytesToHex(ebytes), 16);
	BigInteger n = spec_.getOrder();

	while (true) {
		// 第三步 產生隨機數k [1,n-1]
		Random random = new Random();
		BigInteger K = new BigInteger(n.bitLength() - 1, random);

		if (K.compareTo(n) == 0 || K.compareTo(BigInteger.ZERO) == 0) {
			continue;
		}

		// 第四步 計算pt1(x1,y1) = [K]G這個點
		ECPoint G = spec_.getGenerator();
		ECPoint pt1 = PointMul(K, G, spec_.getCurve());
		BigInteger x1 = pt1.getAffineX();

		// 第五步 計算 r = (e + x1) mod n
		BigInteger r = x1.add(e).mod(n);
		r = r.add(n).mod(n);

		// System.out.println("r=" + r.toString(16));
		// 確保r!=0 且 r+k!=n 也就是 (r+k) != 0 mod n
		if (r.add(K).mod(n).compareTo(BigInteger.ZERO) == 0) {
			continue;
		}

		// 第六步 計算 s = ((1 + d)^-1 * (k - rd)) mod n
		BigInteger tmp1 = dA_.add(BigInteger.ONE).modInverse(n);
		BigInteger tmp2 = K.subtract(r.multiply(dA_).mod(n)).mod(n);
		BigInteger s = tmp1.multiply(tmp2).mod(n);
		s = s.add(n).mod(n);
		if (s.compareTo(BigInteger.ZERO) == 0) {
			continue;
		}

		ECFieldFp fp = (ECFieldFp) spec_.getCurve().getField();
		byte[] pb = fp.getP().toByteArray();
		int len = pb[0] == 0 ? pb.length - 1 : pb.length;

		byte[] rb = r.toByteArray();
		byte[] sb = s.toByteArray();
		byte[] sig = new byte[2 * len];

		if (rb[0] == 0) {
			System.arraycopy(rb, 1, sig, len - rb.length + 1, rb.length - 1);
		} else {
			System.arraycopy(rb, 0, sig, len - rb.length, rb.length);
		}

		if (sb[0] == 0) {
			System.arraycopy(sb, 1, sig, 2 * len - sb.length + 1, sb.length - 1);
		} else {
			System.arraycopy(sb, 0, sig, 2 * len - sb.length, sb.length);
		}

		return sig;
	}

}
 
開發者ID:bubicn,項目名稱:bubichain-sdk-java,代碼行數:76,代碼來源:Sm2Key.java

示例9: Sign

import java.security.spec.ECPoint; //導入方法依賴的package包/類
public byte[] Sign(byte[] id, byte[] msg) {
	// 得到M^ = ZA||M
	ECPoint pA = PointMul(dA_, spec_.getGenerator(), spec_.getCurve());

	byte[] ZA = GetZA(spec_, pA, id);

	// System.out.println("ZA=" + bytesToHex(ZA));

	byte[] M = new byte[msg.length + ZA.length];
	System.arraycopy(ZA, 0, M, 0, ZA.length);
	System.arraycopy(msg, 0, M, ZA.length, msg.length);

	// 第二步 e=Hv(M^)
	byte[] ebytes = SM3Digest.Hash(M);

	BigInteger e = new BigInteger(bytesToHex(ebytes), 16);
	BigInteger n = spec_.getOrder();

	while (true) {
		// 第三步 產生隨機數k [1,n-1]
		Random random = new java.util.Random();
		BigInteger K = new BigInteger(n.bitLength() - 1, random);

		if (K.compareTo(n) == 0 || K.compareTo(BigInteger.ZERO) == 0) {
			continue;
		}

		// 第四步 計算pt1(x1,y1) = [K]G這個點
		ECPoint G = spec_.getGenerator();
		ECPoint pt1 = PointMul(K, G, spec_.getCurve());
		BigInteger x1 = pt1.getAffineX();

		// 第五步 計算 r = (e + x1) mod n
		BigInteger r = x1.add(e).mod(n);
		r = r.add(n).mod(n);

		// System.out.println("r=" + r.toString(16));
		// 確保r!=0 且 r+k!=n 也就是 (r+k) != 0 mod n
		if (r.add(K).mod(n).compareTo(BigInteger.ZERO) == 0) {
			continue;
		}

		// 第六步 計算 s = ((1 + d)^-1 * (k - rd)) mod n
		BigInteger tmp1 = dA_.add(BigInteger.ONE).modInverse(n);
		BigInteger tmp2 = K.subtract(r.multiply(dA_).mod(n)).mod(n);
		BigInteger s = tmp1.multiply(tmp2).mod(n);
		s = s.add(n).mod(n);
		if (s.compareTo(BigInteger.ZERO) == 0) {
			continue;
		}

		ECFieldFp fp = (ECFieldFp) spec_.getCurve().getField();
		byte[] pb = fp.getP().toByteArray();
		int len = pb[0] == 0 ? pb.length - 1 : pb.length;

		byte[] rb = r.toByteArray();
		byte[] sb = s.toByteArray();
		byte[] sig = new byte[2 * len];

		if (rb[0] == 0) {
			System.arraycopy(rb, 1, sig, len - rb.length + 1, rb.length - 1);
		} else {
			System.arraycopy(rb, 0, sig, len - rb.length, rb.length);
		}

		if (sb[0] == 0) {
			System.arraycopy(sb, 1, sig, 2 * len - sb.length + 1, sb.length - 1);
		} else {
			System.arraycopy(sb, 0, sig, 2 * len - sb.length, sb.length);
		}

		return sig;
	}

}
 
開發者ID:bubicn,項目名稱:bubichain-sdk-java,代碼行數:76,代碼來源:Sm2Key.java

示例10: testGetAffineX01

import java.security.spec.ECPoint; //導入方法依賴的package包/類
/**
 * Test #1 for <code>getAffineX()</code> method<br>
 * Assertion: returns affine <code>x</code> coordinate<br>
 * Test preconditions: <code>ECPoint</code> instance
 * created using valid parameters<br>
 * Expected: must return affine <code>x</code> coordinate
 * which is equal to the one passed to the constructor;
 * (both must refer the same object)
 */
public final void testGetAffineX01() {
    BigInteger x = BigInteger.valueOf(-23456L);
    ECPoint p = new ECPoint(x, BigInteger.valueOf(23456L));
    BigInteger xRet = p.getAffineX();
    assertEquals(x, xRet);
    assertSame(x, xRet);
}
 
開發者ID:Sellegit,項目名稱:j2objc,代碼行數:17,代碼來源:ECPointTest.java


注:本文中的java.security.spec.ECPoint.getAffineX方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。