本文整理匯總了Java中java.awt.TexturePaint.getAnchorRect方法的典型用法代碼示例。如果您正苦於以下問題:Java TexturePaint.getAnchorRect方法的具體用法?Java TexturePaint.getAnchorRect怎麽用?Java TexturePaint.getAnchorRect使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類java.awt.TexturePaint
的用法示例。
在下文中一共展示了TexturePaint.getAnchorRect方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: setTexturePaint
import java.awt.TexturePaint; //導入方法依賴的package包/類
/**
* We use OpenGL's texture coordinate generator to automatically
* map the TexturePaint image to the geometry being rendered. The
* generator uses two separate plane equations that take the (x,y)
* location (in device space) of the fragment being rendered to
* calculate (u,v) texture coordinates for that fragment:
* u = Ax + By + Cz + Dw
* v = Ex + Fy + Gz + Hw
*
* Since we use a 2D orthographic projection, we can assume that z=0
* and w=1 for any fragment. So we need to calculate appropriate
* values for the plane equation constants (A,B,D) and (E,F,H) such
* that {u,v}=0 for the top-left of the TexturePaint's anchor
* rectangle and {u,v}=1 for the bottom-right of the anchor rectangle.
* We can easily make the texture image repeat for {u,v} values
* outside the range [0,1] by specifying the GL_REPEAT texture wrap
* mode.
*
* Calculating the plane equation constants is surprisingly simple.
* We can think of it as an inverse matrix operation that takes
* device space coordinates and transforms them into user space
* coordinates that correspond to a location relative to the anchor
* rectangle. First, we translate and scale the current user space
* transform by applying the anchor rectangle bounds. We then take
* the inverse of this affine transform. The rows of the resulting
* inverse matrix correlate nicely to the plane equation constants
* we were seeking.
*/
private static void setTexturePaint(RenderQueue rq,
SunGraphics2D sg2d,
TexturePaint paint,
boolean useMask)
{
BufferedImage bi = paint.getImage();
SurfaceData dstData = sg2d.surfaceData;
SurfaceData srcData =
dstData.getSourceSurfaceData(bi, SunGraphics2D.TRANSFORM_ISIDENT,
CompositeType.SrcOver, null);
boolean filter =
(sg2d.interpolationType !=
AffineTransformOp.TYPE_NEAREST_NEIGHBOR);
// calculate plane equation constants
AffineTransform at = (AffineTransform)sg2d.transform.clone();
Rectangle2D anchor = paint.getAnchorRect();
at.translate(anchor.getX(), anchor.getY());
at.scale(anchor.getWidth(), anchor.getHeight());
double xp0, xp1, xp3, yp0, yp1, yp3;
try {
at.invert();
xp0 = at.getScaleX();
xp1 = at.getShearX();
xp3 = at.getTranslateX();
yp0 = at.getShearY();
yp1 = at.getScaleY();
yp3 = at.getTranslateY();
} catch (java.awt.geom.NoninvertibleTransformException e) {
xp0 = xp1 = xp3 = yp0 = yp1 = yp3 = 0.0;
}
// assert rq.lock.isHeldByCurrentThread();
rq.ensureCapacityAndAlignment(68, 12);
RenderBuffer buf = rq.getBuffer();
buf.putInt(SET_TEXTURE_PAINT);
buf.putInt(useMask ? 1 : 0);
buf.putInt(filter ? 1 : 0);
buf.putLong(srcData.getNativeOps());
buf.putDouble(xp0).putDouble(xp1).putDouble(xp3);
buf.putDouble(yp0).putDouble(yp1).putDouble(yp3);
}
示例2: fillShape
import java.awt.TexturePaint; //導入方法依賴的package包/類
/**
* Fills the given <code>shape</code>.
*/
private void fillShape(Graphics2D g2D, Shape shape, PaintMode paintMode)
{
if (paintMode == PaintMode.PRINT && g2D.getPaint() instanceof TexturePaint && OperatingSystem.isMacOSX()
&& OperatingSystem.isJavaVersionGreaterOrEqual("1.7"))
{
Shape clip = g2D.getClip();
g2D.setClip(shape);
TexturePaint paint = (TexturePaint) g2D.getPaint();
BufferedImage image = paint.getImage();
Rectangle2D anchorRect = paint.getAnchorRect();
Rectangle2D shapeBounds = shape.getBounds2D();
double firstX = anchorRect.getX()
+ Math.round(shapeBounds.getX() / anchorRect.getWidth()) * anchorRect.getWidth();
if (firstX > shapeBounds.getX())
{
firstX -= anchorRect.getWidth();
}
double firstY = anchorRect.getY()
+ Math.round(shapeBounds.getY() / anchorRect.getHeight()) * anchorRect.getHeight();
if (firstY > shapeBounds.getY())
{
firstY -= anchorRect.getHeight();
}
for (double x = firstX; x < shapeBounds.getMaxX(); x += anchorRect.getWidth())
{
for (double y = firstY; y < shapeBounds.getMaxY(); y += anchorRect.getHeight())
{
AffineTransform transform = AffineTransform.getTranslateInstance(x, y);
transform.concatenate(AffineTransform.getScaleInstance(anchorRect.getWidth() / image.getWidth(),
anchorRect.getHeight() / image.getHeight()));
g2D.drawRenderedImage(image, transform);
}
}
g2D.setClip(clip);
}
else
{
g2D.fill(shape);
}
}
示例3: setTexturePaint
import java.awt.TexturePaint; //導入方法依賴的package包/類
/**
* We use OpenGL's texture coordinate generator to automatically
* map the TexturePaint image to the geometry being rendered. The
* generator uses two separate plane equations that take the (x,y)
* location (in device space) of the fragment being rendered to
* calculate (u,v) texture coordinates for that fragment:
* u = Ax + By + Cz + Dw
* v = Ex + Fy + Gz + Hw
*
* Since we use a 2D orthographic projection, we can assume that z=0
* and w=1 for any fragment. So we need to calculate appropriate
* values for the plane equation constants (A,B,D) and (E,F,H) such
* that {u,v}=0 for the top-left of the TexturePaint's anchor
* rectangle and {u,v}=1 for the bottom-right of the anchor rectangle.
* We can easily make the texture image repeat for {u,v} values
* outside the range [0,1] by specifying the GL_REPEAT texture wrap
* mode.
*
* Calculating the plane equation constants is surprisingly simple.
* We can think of it as an inverse matrix operation that takes
* device space coordinates and transforms them into user space
* coordinates that correspond to a location relative to the anchor
* rectangle. First, we translate and scale the current user space
* transform by applying the anchor rectangle bounds. We then take
* the inverse of this affine transform. The rows of the resulting
* inverse matrix correlate nicely to the plane equation constants
* we were seeking.
*/
private static void setTexturePaint(RenderQueue rq,
SunGraphics2D sg2d,
TexturePaint paint,
boolean useMask)
{
BufferedImage bi = paint.getImage();
SurfaceData dstData = sg2d.surfaceData;
SurfaceData srcData =
dstData.getSourceSurfaceData(bi, sg2d.TRANSFORM_ISIDENT,
CompositeType.SrcOver, null);
boolean filter =
(sg2d.interpolationType !=
AffineTransformOp.TYPE_NEAREST_NEIGHBOR);
// calculate plane equation constants
AffineTransform at = (AffineTransform)sg2d.transform.clone();
Rectangle2D anchor = paint.getAnchorRect();
at.translate(anchor.getX(), anchor.getY());
at.scale(anchor.getWidth(), anchor.getHeight());
double xp0, xp1, xp3, yp0, yp1, yp3;
try {
at.invert();
xp0 = at.getScaleX();
xp1 = at.getShearX();
xp3 = at.getTranslateX();
yp0 = at.getShearY();
yp1 = at.getScaleY();
yp3 = at.getTranslateY();
} catch (java.awt.geom.NoninvertibleTransformException e) {
xp0 = xp1 = xp3 = yp0 = yp1 = yp3 = 0.0;
}
// assert rq.lock.isHeldByCurrentThread();
rq.ensureCapacityAndAlignment(68, 12);
RenderBuffer buf = rq.getBuffer();
buf.putInt(SET_TEXTURE_PAINT);
buf.putInt(useMask ? 1 : 0);
buf.putInt(filter ? 1 : 0);
buf.putLong(srcData.getNativeOps());
buf.putDouble(xp0).putDouble(xp1).putDouble(xp3);
buf.putDouble(yp0).putDouble(yp1).putDouble(yp3);
}