當前位置: 首頁>>代碼示例>>Java>>正文


Java TIntHashSet.addAll方法代碼示例

本文整理匯總了Java中gnu.trove.set.hash.TIntHashSet.addAll方法的典型用法代碼示例。如果您正苦於以下問題:Java TIntHashSet.addAll方法的具體用法?Java TIntHashSet.addAll怎麽用?Java TIntHashSet.addAll使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在gnu.trove.set.hash.TIntHashSet的用法示例。


在下文中一共展示了TIntHashSet.addAll方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: TargetRegisterClass

import gnu.trove.set.hash.TIntHashSet; //導入方法依賴的package包/類
protected TargetRegisterClass(int id,
        String name,
        EVT[] vts,
        TargetRegisterClass[] subcs,
        TargetRegisterClass[] supercs,
        TargetRegisterClass[] subregcs,
        TargetRegisterClass[] superregcs,
        int regsz, int regAlign,
        int copyCost,
        int[] regs)
{
    this.id = id;
    this.name = name;
    this.vts = vts;
    subClasses  = subcs;
    superClasses = supercs;
    subRegClasses = subregcs;
    superRegClasses  = superregcs;
    regSize = regsz;
    this.regAlign = regAlign;
    this.regs = regs;
    this.copyCost = copyCost;
    regSet = new TIntHashSet();
    regSet.addAll(regs);
}
 
開發者ID:JianpingZeng,項目名稱:xcc,代碼行數:26,代碼來源:TargetRegisterClass.java

示例2: jaccardIndex

import gnu.trove.set.hash.TIntHashSet; //導入方法依賴的package包/類
public static double jaccardIndex(TIntHashSet a, TIntHashSet b) {
	TIntHashSet union = new TIntHashSet(a);
	union.addAll(b);

	// count up intersection:
	AtomicInteger count = new AtomicInteger();
	a.forEach(x -> {
		if(b.contains(x)) {
			count.incrementAndGet();
		}
		return true;
	});

	double unionSize = union.size();
	double isectSize = count.get();
	return isectSize / unionSize;
}
 
開發者ID:jjfiv,項目名稱:chai,代碼行數:18,代碼來源:SetFns.java

示例3: getNeighborsAtRadius

import gnu.trove.set.hash.TIntHashSet; //導入方法依賴的package包/類
public TIntHashSet getNeighborsAtRadius(final int placeIndex, final int radius, final int xSize,
	final int ySize, final boolean isTorus) {
	final TIntHashSet currentNeigh = new TIntHashSet();
	currentNeigh.add(placeIndex);
	for ( int i = 0; i < radius; i++ ) {
		final TIntHashSet newNeigh = new TIntHashSet();
		TIntIterator it = currentNeigh.iterator();
		while (it.hasNext()) {
			newNeigh.addAll(getNeighborsAtRadius1(it.next(), xSize, ySize, isTorus));
		}
		currentNeigh.addAll(newNeigh);
	}
	currentNeigh.remove(placeIndex);
	return currentNeigh;

}
 
開發者ID:gama-platform,項目名稱:gama,代碼行數:17,代碼來源:GridHexagonalNeighborhoodVertical.java

示例4: testUniquenessAndDeterminance

import gnu.trove.set.hash.TIntHashSet; //導入方法依賴的package包/類
@Test
public void testUniquenessAndDeterminance() {
    Random r = new FastRandom(42);
    TIntHashSet set = new TIntHashSet();
    
    TIntHashSet knownExpectedRepeats = new TIntHashSet();
    knownExpectedRepeats.addAll(new int[] { 9368, 149368, 193310, 194072, 202906, 241908, 249466, 266101, 276853, 289339, 293737 } );
    
    for(int i = 0;i < 300000;i++) {
        int rndInt = r.nextInt();
        if(set.contains(rndInt) && !knownExpectedRepeats.contains(i)) {
            fail();
        }
        set.add(rndInt);
    }
}
 
開發者ID:numenta,項目名稱:htm.java,代碼行數:17,代碼來源:FastRandomTest.java

示例5: getLinks

import gnu.trove.set.hash.TIntHashSet; //導入方法依賴的package包/類
/**
 * Returns all the links where the process with the given ID is either
 * provider or recipient.
 */
public List<ProcessLink> getLinks(long processId) {
	// because this method could be called quite often in graphical
	// presentations of product systems and there can be a lot of links
	// in some kind of product systems (e.g. from IO-databases) we do
	// not just merge the incoming and outgoing links here
	TIntHashSet intSet = new TIntHashSet(Constants.DEFAULT_CAPACITY,
			Constants.DEFAULT_LOAD_FACTOR, -1);
	TIntArrayList list = providerIndex.get(processId);
	if (list != null)
		intSet.addAll(list);
	list = recipientIndex.get(processId);
	if (list != null)
		intSet.addAll(list);
	return getLinks(intSet.iterator());
}
 
開發者ID:GreenDelta,項目名稱:olca-modules,代碼行數:20,代碼來源:ProcessLinkSearchMap.java

示例6: analyzeTrainingFeatures

import gnu.trove.set.hash.TIntHashSet; //導入方法依賴的package包/類
private void analyzeTrainingFeatures(Map<Integer, Float> ratings) {

		selectedFeatures = new TIntHashSet();

		for (int id : ratings.keySet()) {
			if (map_item_intFeatures.containsKey(id)) {
				selectedFeatures.addAll(map_item_intFeatures.get(id).keySet());
			}
		}
		// System.out.println(u + " train features " + selectedFeatures.size());
	}
 
開發者ID:sisinflab,項目名稱:lodreclib,代碼行數:12,代碼來源:UserModelRecommenderWorker.java

示例7: cmpCosineSim

import gnu.trove.set.hash.TIntHashSet; //導入方法依賴的package包/類
private float cmpCosineSim(TIntFloatHashMap v1, TIntFloatHashMap v2) {

		TIntHashSet inters = new TIntHashSet();
		inters.addAll(v1.keySet());
		inters.retainAll(v2.keySet());

		if (inters.size() == 0)
			return 0;
		else {
			int i = 0;
			TIntIterator it = inters.iterator();
			float num = 0;
			float norm_v1 = 0;
			float norm_v2 = 0;
			while (it.hasNext()) {
				i = it.next();
				num += v1.get(i) * v2.get(i);
			}
			for (int k1 : v1.keys())
				norm_v1 += (v1.get(k1) * v1.get(k1));
			for (int k2 : v2.keys())
				norm_v2 += (v2.get(k2) * v2.get(k2));
			return num / (float) (Math.sqrt(norm_v1) * Math.sqrt(norm_v2));

		}

	}
 
開發者ID:sisinflab,項目名稱:lodreclib,代碼行數:28,代碼來源:UserProfileSimilarityRecommenderWorker.java

示例8: search

import gnu.trove.set.hash.TIntHashSet; //導入方法依賴的package包/類
/**
 * Search for a similar data item in the underlying tables and return all
 * matches
 *
 * @param data
 *            the point
 * @return matched ids
 */
public TIntHashSet search(OBJECT data) {
	final TIntHashSet pl = new TIntHashSet();

	for (final Table<OBJECT> table : tables) {
		final TIntArrayList result = table.searchPoint(data);

		if (result != null)
			pl.addAll(result);
	}

	return pl;
}
 
開發者ID:openimaj,項目名稱:openimaj,代碼行數:21,代碼來源:LSHNearestNeighbours.java

示例9: getLinks

import gnu.trove.set.hash.TIntHashSet; //導入方法依賴的package包/類
/**
 * Returns all the links where the process with the given ID is either
 * provider or connected with a provider.
 */
public List<ProcessLink> getLinks(long processId) {
	// because this method could be called quite often in graphical
	// presentations of product systems and there can be a lot of links
	// in some kind of product systems (e.g. from IO-databases) we do
	// not just merge the incoming and outgoing links here
	TIntHashSet intSet = new TIntHashSet(Constants.DEFAULT_CAPACITY, Constants.DEFAULT_LOAD_FACTOR, -1);
	TIntArrayList list = providerIndex.get(processId);
	if (list != null)
		intSet.addAll(list);
	list = connectionIndex.get(processId);
	if (list != null)
		intSet.addAll(list);
	return getLinks(intSet.iterator());
}
 
開發者ID:GreenDelta,項目名稱:olca-app,代碼行數:19,代碼來源:ProcessLinkSearchMap.java

示例10: dirichletMultinomialLikelihoodRatio

import gnu.trove.set.hash.TIntHashSet; //導入方法依賴的package包/類
/** What is the probability that these two observations were drawn from
	 *	the same multinomial with symmetric Dirichlet prior alpha, relative 
	 *	to the probability that they were drawn from different multinomials
	 *	both drawn from this Dirichlet?
	 */
	public static double dirichletMultinomialLikelihoodRatio(TIntIntHashMap countsX,
			TIntIntHashMap countsY,
			double alpha, double alphaSum) {
//		The likelihood for one DCM is 
//		Gamma( alpha_sum )	 prod Gamma( alpha + N_i )
//		prod Gamma ( alpha )   Gamma ( alpha_sum + N )

//		When we divide this by the product of two other DCMs with the same
//		alpha parameter, the first term in the numerator cancels with the 
//		first term in the denominator. Then moving the remaining alpha-only
//		term to the numerator, we get
//		prod Gamma(alpha)	  prod Gamma( alpha + X_i + Y_i )
//		Gamma (alpha_sum)	 Gamma( alpha_sum + X_sum + Y_sum )
//		----------------------------------------------------------
//		prod Gamma(alpha + X_i)		  prod Gamma(alpha + Y_i)
//		Gamma( alpha_sum + X_sum )	  Gamma( alpha_sum + Y_sum )


		double logLikelihood = 0.0;
		double logGammaAlpha = logGamma(alpha);

		int totalX = 0;
		int totalY = 0;

		int key, x, y;

		TIntHashSet distinctKeys = new TIntHashSet();
		distinctKeys.addAll(countsX.keys());
		distinctKeys.addAll(countsY.keys());

		TIntIterator iterator = distinctKeys.iterator();
		while (iterator.hasNext()) {
			key = iterator.next();

			x = 0;
			if (countsX.containsKey(key)) {
				x = countsX.get(key);
			}

			y = 0;
			if (countsY.containsKey(key)) {
				y = countsY.get(key);
			}

			totalX += x;
			totalY += y;

			logLikelihood += logGamma(alpha) + logGamma(alpha + x + y)
			- logGamma(alpha + x) - logGamma(alpha + y);
		}

		logLikelihood += logGamma(alphaSum + totalX) + logGamma(alphaSum + totalY) 
		- logGamma(alphaSum) - logGamma(alphaSum + totalX + totalY);

		return logLikelihood;
	}
 
開發者ID:iamxiatian,項目名稱:wikit,代碼行數:62,代碼來源:Dirichlet.java

示例11: mean

import gnu.trove.set.hash.TIntHashSet; //導入方法依賴的package包/類
/**
 * Returns a <CODE>SparseVector</CODE> whose entries (taken from the union of
 * those in the instances) are the expected values of those in the
 * <CODE>InstanceList</CODE>. This implies the returned vector will not have
 * binary values.
 */
public static SparseVector mean(InstanceList instances) {

	if (instances == null || instances.size() == 0)
		return null;

	Iterator<Instance> instanceItr = instances.iterator();

	SparseVector v;
	Instance instance;
	int indices[];
	int maxSparseIndex = -1;
	int maxDenseIndex = -1;

	// First, we find the union of all the indices used in the instances
	TIntHashSet hIndices = new TIntHashSet(instances.getDataAlphabet().size());

	while (instanceItr.hasNext()) {
		instance = (Instance) instanceItr.next();
		v = (SparseVector) (instance.getData());
		indices = v.getIndices();

		if (indices != null) {
			hIndices.addAll(indices);

			if (indices[indices.length - 1] > maxSparseIndex)
				maxSparseIndex = indices[indices.length - 1];
		} else // dense
		if (v.numLocations() > maxDenseIndex)
			maxDenseIndex = v.numLocations() - 1;
	}

	if (maxDenseIndex > -1) // dense vectors were present
	{
		if (maxSparseIndex > maxDenseIndex)
		// sparse vectors were present and they had greater indices than
		// the dense vectors
		{
			// therefore, we create sparse vectors and
			// add all the dense indices
			for (int i = 0; i <= maxDenseIndex; i++)
				hIndices.add(i);
		} else
		// sparse indices may have been present, but we don't care
		// since they never had indices that exceeded those of the
		// dense vectors
		{
			return mean(instances, maxDenseIndex + 1);
		}
	}

	// reaching this statement implies we can create a sparse vector
	return mean(instances, hIndices.toArray());

}
 
開發者ID:iamxiatian,項目名稱:wikit,代碼行數:61,代碼來源:VectorStats.java

示例12: testMapPotential2D

import gnu.trove.set.hash.TIntHashSet; //導入方法依賴的package包/類
@Test
public void testMapPotential2D() {
    setupParameters();
    parameters.setInputDimensions(new int[] { 6, 12 });
    parameters.setColumnDimensions(new int[] { 2, 4 });
    parameters.setPotentialRadius(1);
    parameters.setPotentialPct(1);
    initSP();

    //Test without wrapAround
    int[] mask = sp.mapPotential(mem, 0, false);
    TIntHashSet trueIndices = new TIntHashSet(new int[] { 0, 1, 2, 12, 13, 14, 24, 25, 26 });
    TIntHashSet maskSet = new TIntHashSet(mask);
    assertTrue(trueIndices.equals(maskSet));

    trueIndices.clear();
    maskSet.clear();
    trueIndices.addAll(new int[] { 6, 7, 8, 18, 19, 20, 30, 31, 32 });
    mask = sp.mapPotential(mem, 2, false);
    maskSet.addAll(mask);
    assertTrue(trueIndices.equals(maskSet));

    //Test with wrapAround
    trueIndices.clear();
    maskSet.clear();
    parameters.setPotentialRadius(2);
    initSP();
    trueIndices.addAll(
            new int[] { 0, 1, 2, 3, 11, 
                    12, 13, 14, 15, 23,
                    24, 25, 26, 27, 35, 
                    36, 37, 38, 39, 47, 
                    60, 61, 62, 63, 71 });
    mask = sp.mapPotential(mem, 0, true);
    maskSet.addAll(mask);
    assertTrue(trueIndices.equals(maskSet));

    trueIndices.clear();
    maskSet.clear();
    trueIndices.addAll(
            new int[] { 0, 8, 9, 10, 11, 
                    12, 20, 21, 22, 23, 
                    24, 32, 33, 34, 35, 
                    36, 44, 45, 46, 47, 
                    60, 68, 69, 70, 71 });
    mask = sp.mapPotential(mem, 3, true);
    maskSet.addAll(mask);
    assertTrue(trueIndices.equals(maskSet));
}
 
開發者ID:numenta,項目名稱:htm.java,代碼行數:50,代碼來源:SpatialPoolerTest.java

示例13: setCacheableResponseCodes

import gnu.trove.set.hash.TIntHashSet; //導入方法依賴的package包/類
public MemcachedStorageConfigBuilder setCacheableResponseCodes(int... statusCodes) {
    cacheableResponseCodes = new TIntHashSet(statusCodes.length,1.0f);
    cacheableResponseCodes.addAll(statusCodes);
    return this;
}
 
開發者ID:tootedom,項目名稱:tomcat-memcached-response-filter,代碼行數:6,代碼來源:MemcachedStorageConfigBuilder.java

示例14: dirichletMultinomialLikelihoodRatio

import gnu.trove.set.hash.TIntHashSet; //導入方法依賴的package包/類
/** What is the probability that these two observations were drawn from
	 *	the same multinomial with symmetric Dirichlet prior alpha, relative 
	 *	to the probability that they were drawn from different multinomials
	 *	both drawn from this Dirichlet?
	 */
	public static double dirichletMultinomialLikelihoodRatio(TIntIntHashMap countsX,
			TIntIntHashMap countsY,
			double alpha, double alphaSum) {
//		The likelihood for one DCM is 
//		Gamma( alpha_sum )	 prod Gamma( alpha + N_i )
//		prod Gamma ( alpha )   Gamma ( alpha_sum + N )

//		When we divide this by the product of two other DCMs with the same
//		alpha parameter, the first term in the numerator cancels with the 
//		first term in the denominator. Then moving the remaining alpha-only
//		term to the numerator, we get
//		prod Gamma(alpha)	  prod Gamma( alpha + X_i + Y_i )
//		Gamma (alpha_sum)	 Gamma( alpha_sum + X_sum + Y_sum )
//		----------------------------------------------------------
//		prod Gamma(alpha + X_i)		  prod Gamma(alpha + Y_i)
//		Gamma( alpha_sum + X_sum )	  Gamma( alpha_sum + Y_sum )


		double logLikelihood = 0.0;
		//double logGammaAlpha = logGamma(alpha);

		int totalX = 0;
		int totalY = 0;

		int key, x, y;

		TIntHashSet distinctKeys = new TIntHashSet();
		distinctKeys.addAll(countsX.keys());
		distinctKeys.addAll(countsY.keys());

		TIntIterator iterator = distinctKeys.iterator();
		while (iterator.hasNext()) {
			key = iterator.next();

			x = 0;
			if (countsX.containsKey(key)) {
				x = countsX.get(key);
			}

			y = 0;
			if (countsY.containsKey(key)) {
				y = countsY.get(key);
			}

			totalX += x;
			totalY += y;

			logLikelihood += logGamma(alpha) + logGamma(alpha + x + y)
			- logGamma(alpha + x) - logGamma(alpha + y);
		}

		logLikelihood += logGamma(alphaSum + totalX) + logGamma(alphaSum + totalY) 
		- logGamma(alphaSum) - logGamma(alphaSum + totalX + totalY);

		return logLikelihood;
	}
 
開發者ID:tweninger,項目名稱:nina,代碼行數:62,代碼來源:Dirichlet.java

示例15: dirichletMultinomialLikelihoodRatio

import gnu.trove.set.hash.TIntHashSet; //導入方法依賴的package包/類
/**
     * What is the probability that these two observations were drawn from the
     * same multinomial with symmetric Dirichlet prior alpha, relative to the
     * probability that they were drawn from different multinomials both drawn
     * from this Dirichlet?
     */
    public static double dirichletMultinomialLikelihoodRatio(TIntIntHashMap countsX,
            TIntIntHashMap countsY,
            double alpha, double alphaSum) {
//		The likelihood for one DCM is 
//		Gamma( alpha_sum )	 prod Gamma( alpha + N_i )
//		prod Gamma ( alpha )   Gamma ( alpha_sum + N )

//		When we divide this by the product of two other DCMs with the same
//		alpha parameter, the first term in the numerator cancels with the 
//		first term in the denominator. Then moving the remaining alpha-only
//		term to the numerator, we get
//		prod Gamma(alpha)	  prod Gamma( alpha + X_i + Y_i )
//		Gamma (alpha_sum)	 Gamma( alpha_sum + X_sum + Y_sum )
//		----------------------------------------------------------
//		prod Gamma(alpha + X_i)		  prod Gamma(alpha + Y_i)
//		Gamma( alpha_sum + X_sum )	  Gamma( alpha_sum + Y_sum )
        double logLikelihood = 0.0;
        double logGammaAlpha = logGamma(alpha);

        int totalX = 0;
        int totalY = 0;

        int key, x, y;

        TIntHashSet distinctKeys = new TIntHashSet();
        distinctKeys.addAll(countsX.keys());
        distinctKeys.addAll(countsY.keys());

        TIntIterator iterator = distinctKeys.iterator();
        while (iterator.hasNext()) {
            key = iterator.next();

            x = 0;
            if (countsX.containsKey(key)) {
                x = countsX.get(key);
            }

            y = 0;
            if (countsY.containsKey(key)) {
                y = countsY.get(key);
            }

            totalX += x;
            totalY += y;

            logLikelihood += logGamma(alpha) + logGamma(alpha + x + y)
                    - logGamma(alpha + x) - logGamma(alpha + y);
        }

        logLikelihood += logGamma(alphaSum + totalX) + logGamma(alphaSum + totalY)
                - logGamma(alphaSum) - logGamma(alphaSum + totalX + totalY);

        return logLikelihood;
    }
 
開發者ID:hmetaxa,項目名稱:MixLDA,代碼行數:61,代碼來源:Dirichlet.java


注:本文中的gnu.trove.set.hash.TIntHashSet.addAll方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。