本文整理匯總了Java中gnu.trove.map.hash.TObjectIntHashMap.forEachEntry方法的典型用法代碼示例。如果您正苦於以下問題:Java TObjectIntHashMap.forEachEntry方法的具體用法?Java TObjectIntHashMap.forEachEntry怎麽用?Java TObjectIntHashMap.forEachEntry使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類gnu.trove.map.hash.TObjectIntHashMap
的用法示例。
在下文中一共展示了TObjectIntHashMap.forEachEntry方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: postprocessQuery
import gnu.trove.map.hash.TObjectIntHashMap; //導入方法依賴的package包/類
/**
* This method represents the last step that's executed when processing a query. A list of partial-results (DistanceElements) returned by
* the lookup stage is processed based on some internal method and finally converted to a list of ScoreElements. The filtered list of
* ScoreElements is returned by the feature module during retrieval.
*
* @param partialResults List of partial results returned by the lookup stage.
* @param qc A ReadableQueryConfig object that contains query-related configuration parameters.
* @return List of final results. Is supposed to be de-duplicated and the number of items should not exceed the number of items per module.
*/
@Override
protected List<ScoreElement> postprocessQuery(List<SegmentDistanceElement> partialResults, ReadableQueryConfig qc) {
/* Prepare helper data-structures. */
final List<ScoreElement> results = new ArrayList<>();
final TObjectIntHashMap<String> scoreMap = new TObjectIntHashMap<>();
/* Set QueryConfig and extract correspondence function. */
qc = this.setQueryConfig(qc);
final CorrespondenceFunction correspondence = qc.getCorrespondenceFunction().orElse(this.linearCorrespondence);
for (DistanceElement hit : partialResults) {
if (hit.getDistance() < this.distanceThreshold) {
scoreMap.adjustOrPutValue(hit.getId(), 1, scoreMap.get(hit.getId())/2);
}
}
/* Prepare final result-set. */
scoreMap.forEachEntry((key, value) -> results.add(new SegmentScoreElement(key, 1.0 - 1.0/value)));
ScoreElement.filterMaximumScores(results.stream());
return results;
}
示例2: takeTop
import gnu.trove.map.hash.TObjectIntHashMap; //導入方法依賴的package包/類
public static <T> List<Weighted<T>> takeTop(int k, TObjectIntHashMap<T> objects) {
TopKHeap<Weighted<T>> top = new TopKHeap<>(k);
objects.forEachEntry((obj, count) -> {
top.offer(new Weighted<>(count, obj));
return true;
});
return top.getSorted();
}
示例3: search
import gnu.trove.map.hash.TObjectIntHashMap; //導入方法依賴的package包/類
/**
* Search for a given image (represented by its features) in the database
*
* @param features
* the features
* @return the list of matching images and their scores (bigger == more
* chance of match)
*/
public List<ObjectIntPair<T>> search(int[][] features) {
final TObjectIntHashMap<T> counter = new TObjectIntHashMap<>();
for (final int[] sketch : features) {
for (int i = 0; i < sketch.length; i++) {
final int sk = sketch[i];
final Set<T> s = database.get(i).get(sk);
if (s != null) {
for (final T key : s) {
counter.adjustOrPutValue(key, 1, 1);
}
}
}
}
final List<ObjectIntPair<T>> result = new ArrayList<>();
counter.forEachEntry(new TObjectIntProcedure<T>() {
@Override
public boolean execute(T a, int b) {
if (b > minScore)
result.add(ObjectIntPair.pair(a, b));
return false;
}
});
Collections.sort(result, new Comparator<ObjectIntPair<T>>() {
@Override
public int compare(ObjectIntPair<T> o1, ObjectIntPair<T> o2) {
return Integer.compare(o2.second, o1.second);
}
});
return result;
}
示例4: train
import gnu.trove.map.hash.TObjectIntHashMap; //導入方法依賴的package包/類
@Override
public void train(List<? extends Annotated<OBJECT, ANNOTATION>> data) {
final TIntIntHashMap nAnnotationCounts = new TIntIntHashMap();
final TObjectIntHashMap<ANNOTATION> annotationCounts = new TObjectIntHashMap<ANNOTATION>();
int maxVal = 0;
for (final Annotated<OBJECT, ANNOTATION> sample : data) {
final Collection<ANNOTATION> annos = sample.getAnnotations();
for (final ANNOTATION s : annos) {
annotationCounts.adjustOrPutValue(s, 1, 1);
}
nAnnotationCounts.adjustOrPutValue(annos.size(), 1, 1);
if (annos.size() > maxVal)
maxVal = annos.size();
}
// build distribution and rng for each annotation
annotations = new ArrayList<ANNOTATION>();
final TDoubleArrayList probs = new TDoubleArrayList();
annotationCounts.forEachEntry(new TObjectIntProcedure<ANNOTATION>() {
@Override
public boolean execute(ANNOTATION a, int b) {
annotations.add(a);
probs.add(b);
return true;
}
});
annotationProbability = new EmpiricalWalker(probs.toArray(), Empirical.NO_INTERPOLATION, new MersenneTwister());
numAnnotations.train(data);
}
示例5: findMatches
import gnu.trove.map.hash.TObjectIntHashMap; //導入方法依賴的package包/類
@Override
public boolean findMatches(List<T> queryfeatures) {
matches = new ArrayList<Pair<T>>();
final TObjectIntHashMap<T> targets = new TObjectIntHashMap<T>();
for (final T query : queryfeatures) {
final T modeltarget = findMatch(query, modelKeypoints);
if (modeltarget == null)
continue;
final T querytarget = findMatch(modeltarget, queryfeatures);
if (querytarget == query) {
matches.add(new Pair<T>(query, modeltarget));
targets.adjustOrPutValue(modeltarget, 1, 1);
}
}
final ArrayList<Pair<T>> matchesToRemove = new ArrayList<Pair<T>>();
targets.forEachEntry(new TObjectIntProcedure<T>() {
@Override
public boolean execute(T a, int b) {
if (b > 1) {
for (final Pair<T> p : matches) {
if (p.secondObject() == a)
matchesToRemove.add(p);
}
}
return true;
}
});
matches.removeAll(matchesToRemove);
return matches.size() > 0;
}