當前位置: 首頁>>代碼示例>>Java>>正文


Java Tree.pennPrint方法代碼示例

本文整理匯總了Java中edu.stanford.nlp.trees.Tree.pennPrint方法的典型用法代碼示例。如果您正苦於以下問題:Java Tree.pennPrint方法的具體用法?Java Tree.pennPrint怎麽用?Java Tree.pennPrint使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在edu.stanford.nlp.trees.Tree的用法示例。


在下文中一共展示了Tree.pennPrint方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: demoDP

import edu.stanford.nlp.trees.Tree; //導入方法依賴的package包/類
/**
 * demoDP demonstrates turning a file into tokens and then parse trees. Note
 * that the trees are printed by calling pennPrint on the Tree object. It is
 * also possible to pass a PrintWriter to pennPrint if you want to capture
 * the output.
 * 
 * file => tokens => parse trees
 */
public static void demoDP(LexicalizedParser lp, String filename) {
	// This option shows loading, sentence-segmenting and tokenizing
	// a file using DocumentPreprocessor.
	TreebankLanguagePack tlp = new PennTreebankLanguagePack();
	GrammaticalStructureFactory gsf = tlp.grammaticalStructureFactory();
	// You could also create a tokenizer here (as below) and pass it
	// to DocumentPreprocessor
	for (List<HasWord> sentence : new DocumentPreprocessor(filename)) {
		Tree parse = lp.apply(sentence);
		parse.pennPrint();
		System.out.println();

		GrammaticalStructure gs = gsf.newGrammaticalStructure(parse);
		Collection tdl = gs.typedDependenciesCCprocessed();
		System.out.println(tdl);
		System.out.println();
	}
}
 
開發者ID:opinion-extraction-propagation,項目名稱:TASC-Tuples,代碼行數:27,代碼來源:ParserDemo.java

示例2: demoAPI

import edu.stanford.nlp.trees.Tree; //導入方法依賴的package包/類
/**
 * demoAPI demonstrates other ways of calling the parser with already
 * tokenized text, or in some cases, raw text that needs to be tokenized as
 * a single sentence. Output is handled with a TreePrint object. Note that
 * the options used when creating the TreePrint can determine what results
 * to print out. Once again, one can capture the output by passing a
 * PrintWriter to TreePrint.printTree.
 * 
 * difference: already tokenized text
 * 
 * 
 */
public static void demoAPI(LexicalizedParser lp) {
	// This option shows parsing a list of correctly tokenized words
	String[] sent = { "This", "is", "an", "easy", "sentence", "." };
	List<CoreLabel> rawWords = Sentence.toCoreLabelList(sent);
	Tree parse = lp.apply(rawWords);
	parse.pennPrint();
	System.out.println();

	// This option shows loading and using an explicit tokenizer
	String sent2 = "Hey @Apple, pretty much all your products are amazing. You blow minds every time you launch a new gizmo."
			+ " that said, your hold music is crap";
	TokenizerFactory<CoreLabel> tokenizerFactory = PTBTokenizer.factory(
			new CoreLabelTokenFactory(), "");
	Tokenizer<CoreLabel> tok = tokenizerFactory
			.getTokenizer(new StringReader(sent2));
	List<CoreLabel> rawWords2 = tok.tokenize();
	parse = lp.apply(rawWords2);

	TreebankLanguagePack tlp = new PennTreebankLanguagePack();
	GrammaticalStructureFactory gsf = tlp.grammaticalStructureFactory();
	GrammaticalStructure gs = gsf.newGrammaticalStructure(parse);
	List<TypedDependency> tdl = gs.typedDependenciesCCprocessed();
	System.out.println(tdl);
	System.out.println();

	// You can also use a TreePrint object to print trees and dependencies
	TreePrint tp = new TreePrint("penn,typedDependenciesCollapsed");
	tp.printTree(parse);
}
 
開發者ID:opinion-extraction-propagation,項目名稱:TASC-Tuples,代碼行數:42,代碼來源:ParserDemo.java


注:本文中的edu.stanford.nlp.trees.Tree.pennPrint方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。