本文整理匯總了Java中dr.inference.mcmc.MCMC.init方法的典型用法代碼示例。如果您正苦於以下問題:Java MCMC.init方法的具體用法?Java MCMC.init怎麽用?Java MCMC.init使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類dr.inference.mcmc.MCMC
的用法示例。
在下文中一共展示了MCMC.init方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: main
import dr.inference.mcmc.MCMC; //導入方法依賴的package包/類
public static void main(String[] arg) throws IOException, TraceException {
// constructing random variable representing mean of normal distribution
Variable.D mean = new Variable.D("mean", 1.0);
// give mean a uniform prior [-1000, 1000]
mean.addBounds(new Parameter.DefaultBounds(1000, -1000, 1));
// constructing random variable representing stdev of normal distribution
Variable.D stdev = new Variable.D("stdev", 1.0);
// give stdev a uniform prior [0, 1000]
stdev.addBounds(new Parameter.DefaultBounds(1000, 0, 1));
// construct normal distribution model
NormalDistributionModel normal = new NormalDistributionModel(mean, stdev);
// construct a likelihood for normal distribution
DistributionLikelihood likelihood = new DistributionLikelihood(normal);
// construct data
Attribute.Default<double[]> d = new Attribute.Default<double[]>(
"x", new double[]{1, 2, 3, 4, 5, 6, 7, 8, 9});
// add data (representing 9 independent observations) to likelihood
likelihood.addData(d);
// construct two "operators" to be used as the proposal distribution
MCMCOperator meanMove = new ScaleOperator(mean, 0.75);
MCMCOperator stdevMove = new ScaleOperator(stdev, 0.75);
// construct a logger to log progress of MCMC run to stdout (screen)
MCLogger logger1 = new MCLogger(100);
logger1.add(mean);
logger1.add(stdev);
// construct a logger to log to a log file for later analysis
MCLogger logger2 = new MCLogger("tutorial1.log", 100, false, 0);
logger2.add(mean);
logger2.add(stdev);
// construct MCMC object
MCMC mcmc = new MCMC("tutorial1:normal");
// initialize MCMC with chain length, likelihood, operators and loggers
mcmc.init(100000, likelihood, new MCMCOperator[]{meanMove, stdevMove}, new Logger[]{logger1, logger2});
// run the mcmc
mcmc.chain();
// perform post-analysis
TraceAnalysis.report("tutorial1.log");
}
示例2: testLognormalPrior
import dr.inference.mcmc.MCMC; //導入方法依賴的package包/類
public void testLognormalPrior() {
// ConstantPopulation constant = new ConstantPopulation(Units.Type.YEARS);
// constant.setN0(popSize); // popSize
Parameter popSize = new Parameter.Default(6.0);
popSize.setId(ConstantPopulationModelParser.POPULATION_SIZE);
ConstantPopulationModel demo = new ConstantPopulationModel(popSize, Units.Type.YEARS);
//Likelihood
Likelihood dummyLikelihood = new DummyLikelihood(demo);
// Operators
OperatorSchedule schedule = new SimpleOperatorSchedule();
MCMCOperator operator = new ScaleOperator(popSize, 0.75);
operator.setWeight(1.0);
schedule.addOperator(operator);
// Log
ArrayLogFormatter formatter = new ArrayLogFormatter(false);
MCLogger[] loggers = new MCLogger[2];
loggers[0] = new MCLogger(formatter, 1000, false);
// loggers[0].add(treeLikelihood);
loggers[0].add(popSize);
loggers[1] = new MCLogger(new TabDelimitedFormatter(System.out), 100000, false);
// loggers[1].add(treeLikelihood);
loggers[1].add(popSize);
// MCMC
MCMC mcmc = new MCMC("mcmc1");
MCMCOptions options = new MCMCOptions();
options.setChainLength(1000000);
options.setUseCoercion(true); // autoOptimize = true
options.setCoercionDelay(100);
options.setTemperature(1.0);
options.setFullEvaluationCount(2000);
DistributionLikelihood logNormalLikelihood = new DistributionLikelihood(new LogNormalDistribution(1.0, 1.0), 0); // meanInRealSpace="false"
logNormalLikelihood.addData(popSize);
List<Likelihood> likelihoods = new ArrayList<Likelihood>();
likelihoods.add(logNormalLikelihood);
Likelihood prior = new CompoundLikelihood(0, likelihoods);
likelihoods.clear();
likelihoods.add(dummyLikelihood);
Likelihood likelihood = new CompoundLikelihood(-1, likelihoods);
likelihoods.clear();
likelihoods.add(prior);
likelihoods.add(likelihood);
Likelihood posterior = new CompoundLikelihood(0, likelihoods);
mcmc.setShowOperatorAnalysis(true);
mcmc.init(options, posterior, schedule, loggers);
mcmc.run();
// time
System.out.println(mcmc.getTimer().toString());
// Tracer
List<Trace> traces = formatter.getTraces();
ArrayTraceList traceList = new ArrayTraceList("LognormalPriorTest", traces, 0);
for (int i = 1; i < traces.size(); i++) {
traceList.analyseTrace(i);
}
// <expectation name="param" value="4.48168907"/>
TraceCorrelation popSizeStats = traceList.getCorrelationStatistics(traceList.getTraceIndex(ConstantPopulationModelParser.POPULATION_SIZE));
System.out.println("Expectation of Log-Normal(1,1) is e^(M+S^2/2) = e^(1.5) = " + Math.exp(1.5));
assertExpectation(ConstantPopulationModelParser.POPULATION_SIZE, popSizeStats, Math.exp(1.5));
}
示例3: testLognormalPrior
import dr.inference.mcmc.MCMC; //導入方法依賴的package包/類
public void testLognormalPrior() {
// ConstantPopulation constant = new ConstantPopulation(Units.Type.YEARS);
// constant.setN0(popSize); // popSize
Parameter popSize = new Parameter.Default(6.0);
popSize.setId(ConstantPopulationModelParser.POPULATION_SIZE);
ConstantPopulationModel demo = new ConstantPopulationModel(popSize, Units.Type.YEARS);
//Likelihood
Likelihood dummyLikelihood = new DummyLikelihood(demo);
// Operators
OperatorSchedule schedule = new SimpleOperatorSchedule();
MCMCOperator operator = new ScaleOperator(popSize, 0.75);
operator.setWeight(1.0);
schedule.addOperator(operator);
// Log
ArrayLogFormatter formatter = new ArrayLogFormatter(false);
MCLogger[] loggers = new MCLogger[2];
loggers[0] = new MCLogger(formatter, 1000, false);
// loggers[0].add(treeLikelihood);
loggers[0].add(popSize);
loggers[1] = new MCLogger(new TabDelimitedFormatter(System.out), 100000, false);
// loggers[1].add(treeLikelihood);
loggers[1].add(popSize);
// MCMC
MCMC mcmc = new MCMC("mcmc1");
MCMCOptions options = new MCMCOptions(1000000);
DistributionLikelihood logNormalLikelihood = new DistributionLikelihood(new LogNormalDistribution(1.0, 1.0), 0); // meanInRealSpace="false"
logNormalLikelihood.addData(popSize);
List<Likelihood> likelihoods = new ArrayList<Likelihood>();
likelihoods.add(logNormalLikelihood);
Likelihood prior = new CompoundLikelihood(0, likelihoods);
likelihoods.clear();
likelihoods.add(dummyLikelihood);
Likelihood likelihood = new CompoundLikelihood(-1, likelihoods);
likelihoods.clear();
likelihoods.add(prior);
likelihoods.add(likelihood);
Likelihood posterior = new CompoundLikelihood(0, likelihoods);
mcmc.setShowOperatorAnalysis(true);
mcmc.init(options, posterior, schedule, loggers);
mcmc.run();
// time
System.out.println(mcmc.getTimer().toString());
// Tracer
List<Trace> traces = formatter.getTraces();
ArrayTraceList traceList = new ArrayTraceList("LognormalPriorTest", traces, 0);
for (int i = 1; i < traces.size(); i++) {
traceList.analyseTrace(i);
}
// <expectation name="param" value="4.48168907"/>
TraceCorrelation popSizeStats = traceList.getCorrelationStatistics(traceList.getTraceIndex(ConstantPopulationModelParser.POPULATION_SIZE));
System.out.println("Expectation of Log-Normal(1,1) is e^(M+S^2/2) = e^(1.5) = " + Math.exp(1.5));
assertExpectation(ConstantPopulationModelParser.POPULATION_SIZE, popSizeStats, Math.exp(1.5));
}
示例4: randomLocalYuleTester
import dr.inference.mcmc.MCMC; //導入方法依賴的package包/類
private void randomLocalYuleTester(TreeModel treeModel, Parameter I, Parameter b, OperatorSchedule schedule) {
MCMC mcmc = new MCMC("mcmc1");
MCMCOptions options = new MCMCOptions(1000000);
TreeLengthStatistic tls = new TreeLengthStatistic(TL, treeModel);
TreeHeightStatistic rootHeight = new TreeHeightStatistic(TREE_HEIGHT, treeModel);
Parameter m = new Parameter.Default("m", 1.0, 0.0, Double.MAX_VALUE);
SpeciationModel speciationModel = new RandomLocalYuleModel(b, I, m, false, Units.Type.YEARS, 4);
Likelihood likelihood = new SpeciationLikelihood(treeModel, speciationModel, "randomYule.like");
ArrayLogFormatter formatter = new ArrayLogFormatter(false);
MCLogger[] loggers = new MCLogger[2];
loggers[0] = new MCLogger(formatter, 100, false);
loggers[0].add(likelihood);
loggers[0].add(rootHeight);
loggers[0].add(tls);
loggers[0].add(I);
loggers[1] = new MCLogger(new TabDelimitedFormatter(System.out), 100000, false);
loggers[1].add(likelihood);
loggers[1].add(rootHeight);
loggers[1].add(tls);
loggers[1].add(I);
mcmc.setShowOperatorAnalysis(true);
mcmc.init(options, likelihood, schedule, loggers);
mcmc.run();
List<Trace> traces = formatter.getTraces();
ArrayTraceList traceList = new ArrayTraceList("yuleModelTest", traces, 0);
for (int i = 1; i < traces.size(); i++) {
traceList.analyseTrace(i);
}
TraceCorrelation tlStats =
traceList.getCorrelationStatistics(traceList.getTraceIndex("root." + birthRateIndicator));
System.out.println("mean = " + tlStats.getMean());
System.out.println("expected mean = 0.5");
assertExpectation("root." + birthRateIndicator, tlStats, 0.5);
}
示例5: yuleTester
import dr.inference.mcmc.MCMC; //導入方法依賴的package包/類
private void yuleTester(TreeModel treeModel, OperatorSchedule schedule) {
MCMC mcmc = new MCMC("mcmc1");
MCMCOptions options = new MCMCOptions();
options.setChainLength(1000000);
options.setUseCoercion(true);
options.setCoercionDelay(100);
options.setTemperature(1.0);
options.setFullEvaluationCount(2000);
TreeLengthStatistic tls = new TreeLengthStatistic(TL, treeModel);
TreeHeightStatistic rootHeight = new TreeHeightStatistic(TREE_HEIGHT, treeModel);
Parameter b = new Parameter.Default("b", 2.0, 0.0, Double.MAX_VALUE);
Parameter d = new Parameter.Default("d", 0.0, 0.0, Double.MAX_VALUE);
SpeciationModel speciationModel = new BirthDeathGernhard08Model(b, d, null, BirthDeathGernhard08Model.TreeType.TIMESONLY,
Units.Type.YEARS);
Likelihood likelihood = new SpeciationLikelihood(treeModel, speciationModel, "yule.like");
ArrayLogFormatter formatter = new ArrayLogFormatter(false);
MCLogger[] loggers = new MCLogger[2];
loggers[0] = new MCLogger(formatter, 100, false);
loggers[0].add(likelihood);
loggers[0].add(rootHeight);
loggers[0].add(tls);
loggers[1] = new MCLogger(new TabDelimitedFormatter(System.out), 100000, false);
loggers[1].add(likelihood);
loggers[1].add(rootHeight);
loggers[1].add(tls);
mcmc.setShowOperatorAnalysis(true);
mcmc.init(options, likelihood, schedule, loggers);
mcmc.run();
List<Trace> traces = formatter.getTraces();
ArrayTraceList traceList = new ArrayTraceList("yuleModelTest", traces, 0);
for (int i = 1; i < traces.size(); i++) {
traceList.analyseTrace(i);
}
// expectation of root height for 4 tips and lambda = 2
// rootHeight = 0.541666
// TL = 1.5
TraceCorrelation tlStats =
traceList.getCorrelationStatistics(traceList.getTraceIndex(TL));
assertExpectation(TL, tlStats, 1.5);
TraceCorrelation treeHeightStats =
traceList.getCorrelationStatistics(traceList.getTraceIndex(TREE_HEIGHT));
assertExpectation(TREE_HEIGHT, treeHeightStats, 0.5416666);
}
示例6: randomLocalYuleTester
import dr.inference.mcmc.MCMC; //導入方法依賴的package包/類
private void randomLocalYuleTester(TreeModel treeModel, Parameter I, Parameter b, OperatorSchedule schedule) {
MCMC mcmc = new MCMC("mcmc1");
MCMCOptions options = new MCMCOptions();
options.setChainLength(1000000);
options.setUseCoercion(true);
options.setCoercionDelay(100);
options.setTemperature(1.0);
options.setFullEvaluationCount(2000);
TreeLengthStatistic tls = new TreeLengthStatistic(TL, treeModel);
TreeHeightStatistic rootHeight = new TreeHeightStatistic(TREE_HEIGHT, treeModel);
Parameter m = new Parameter.Default("m", 1.0, 0.0, Double.MAX_VALUE);
SpeciationModel speciationModel = new RandomLocalYuleModel(b, I, m, false, Units.Type.YEARS, 4);
Likelihood likelihood = new SpeciationLikelihood(treeModel, speciationModel, "randomYule.like");
ArrayLogFormatter formatter = new ArrayLogFormatter(false);
MCLogger[] loggers = new MCLogger[2];
loggers[0] = new MCLogger(formatter, 100, false);
loggers[0].add(likelihood);
loggers[0].add(rootHeight);
loggers[0].add(tls);
loggers[0].add(I);
loggers[1] = new MCLogger(new TabDelimitedFormatter(System.out), 100000, false);
loggers[1].add(likelihood);
loggers[1].add(rootHeight);
loggers[1].add(tls);
loggers[1].add(I);
mcmc.setShowOperatorAnalysis(true);
mcmc.init(options, likelihood, schedule, loggers);
mcmc.run();
List<Trace> traces = formatter.getTraces();
ArrayTraceList traceList = new ArrayTraceList("yuleModelTest", traces, 0);
for (int i = 1; i < traces.size(); i++) {
traceList.analyseTrace(i);
}
TraceCorrelation tlStats =
traceList.getCorrelationStatistics(traceList.getTraceIndex("root." + birthRateIndicator));
System.out.println("mean = " + tlStats.getMean());
System.out.println("expected mean = 0.5");
assertExpectation("root." + birthRateIndicator, tlStats, 0.5);
}
示例7: yuleTester
import dr.inference.mcmc.MCMC; //導入方法依賴的package包/類
private void yuleTester(TreeModel treeModel, OperatorSchedule schedule) {
MCMC mcmc = new MCMC("mcmc1");
MCMCOptions options = new MCMCOptions(1000000);
TreeLengthStatistic tls = new TreeLengthStatistic(TL, treeModel);
TreeHeightStatistic rootHeight = new TreeHeightStatistic(TREE_HEIGHT, treeModel);
Parameter b = new Parameter.Default("b", 2.0, 0.0, Double.MAX_VALUE);
Parameter d = new Parameter.Default("d", 0.0, 0.0, Double.MAX_VALUE);
SpeciationModel speciationModel = new BirthDeathGernhard08Model(b, d, null, BirthDeathGernhard08Model.TreeType.TIMESONLY,
Units.Type.YEARS);
Likelihood likelihood = new SpeciationLikelihood(treeModel, speciationModel, "yule.like");
ArrayLogFormatter formatter = new ArrayLogFormatter(false);
MCLogger[] loggers = new MCLogger[2];
loggers[0] = new MCLogger(formatter, 100, false);
loggers[0].add(likelihood);
loggers[0].add(rootHeight);
loggers[0].add(tls);
loggers[1] = new MCLogger(new TabDelimitedFormatter(System.out), 100000, false);
loggers[1].add(likelihood);
loggers[1].add(rootHeight);
loggers[1].add(tls);
mcmc.setShowOperatorAnalysis(true);
mcmc.init(options, likelihood, schedule, loggers);
mcmc.run();
List<Trace> traces = formatter.getTraces();
ArrayTraceList traceList = new ArrayTraceList("yuleModelTest", traces, 0);
for (int i = 1; i < traces.size(); i++) {
traceList.analyseTrace(i);
}
// expectation of root height for 4 tips and lambda = 2
// rootHeight = 0.541666
// TL = 1.5
TraceCorrelation tlStats =
traceList.getCorrelationStatistics(traceList.getTraceIndex(TL));
assertExpectation(TL, tlStats, 1.5);
TraceCorrelation treeHeightStats =
traceList.getCorrelationStatistics(traceList.getTraceIndex(TREE_HEIGHT));
assertExpectation(TREE_HEIGHT, treeHeightStats, 0.5416666);
}