當前位置: 首頁>>代碼示例>>Java>>正文


Java NominalMapping.mapIndex方法代碼示例

本文整理匯總了Java中com.rapidminer.example.table.NominalMapping.mapIndex方法的典型用法代碼示例。如果您正苦於以下問題:Java NominalMapping.mapIndex方法的具體用法?Java NominalMapping.mapIndex怎麽用?Java NominalMapping.mapIndex使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在com.rapidminer.example.table.NominalMapping的用法示例。


在下文中一共展示了NominalMapping.mapIndex方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: learn

import com.rapidminer.example.table.NominalMapping; //導入方法依賴的package包/類
@Override
public Model learn(ExampleSet exampleSet) throws OperatorException {
	int numberOfNumericalAttributes = 0;
	for (Attribute attribute : exampleSet.getAttributes()) {
		this.checkForStop();
		if (attribute.isNumerical()) {
			numberOfNumericalAttributes++;
		}
	}

	NominalMapping labelMapping = exampleSet.getAttributes().getLabel().getMapping();
	String[] labelValues = new String[labelMapping.size()];
	for (int i = 0; i < labelMapping.size(); i++) {
		this.checkForStop();
		labelValues[i] = labelMapping.mapIndex(i);
	}

	Matrix[] meanVectors = getMeanVectors(exampleSet, numberOfNumericalAttributes, labelValues);
	Matrix[] inverseCovariance = getInverseCovarianceMatrices(exampleSet, labelValues);

	return getModel(exampleSet, labelValues, meanVectors, inverseCovariance,
			getAprioriProbabilities(exampleSet, labelValues));
}
 
開發者ID:transwarpio,項目名稱:rapidminer,代碼行數:24,代碼來源:LinearDiscriminantAnalysis.java

示例2: learn

import com.rapidminer.example.table.NominalMapping; //導入方法依賴的package包/類
@Override
public Model learn(ExampleSet exampleSet) throws OperatorException {
	int numberOfNumericalAttributes = 0;
	for (Attribute attribute : exampleSet.getAttributes()) {
		this.checkForStop();
		if (attribute.isNumerical()) {
			numberOfNumericalAttributes++;
		}
	}

	NominalMapping labelMapping = exampleSet.getAttributes().getLabel().getMapping();
	String[] labelValues = new String[labelMapping.size()];
	for (int i = 0; i < labelMapping.size(); i++) {
		this.checkForStop();
		labelValues[i] = labelMapping.mapIndex(i);
	}

	Matrix[] meanVectors = getMeanVectors(exampleSet, numberOfNumericalAttributes, labelValues);
	Matrix[] inverseCovariance = getInverseCovarianceMatrices(exampleSet, labelValues);

	return getModel(exampleSet, labelValues, meanVectors, inverseCovariance);
}
 
開發者ID:rapidminer,項目名稱:rapidminer-studio,代碼行數:23,代碼來源:RegularizedDiscriminantAnalysis.java

示例3: learn

import com.rapidminer.example.table.NominalMapping; //導入方法依賴的package包/類
public Model learn(ExampleSet exampleSet) throws OperatorException {
	int numberOfNumericalAttributes = 0;
	for (Attribute attribute: exampleSet.getAttributes()) {
		if (attribute.isNumerical()) {
			numberOfNumericalAttributes++;	
		}
	}

	NominalMapping labelMapping = exampleSet.getAttributes().getLabel().getMapping();
	String[] labelValues = new String[labelMapping.size()];
	for (int i = 0; i < labelMapping.size(); i++) {
		labelValues[i] = labelMapping.mapIndex(i);	
	}


	Matrix[] meanVectors = getMeanVectors(exampleSet, numberOfNumericalAttributes, labelValues);
	Matrix[] inverseCovariance = getInverseCovarianceMatrices(exampleSet, labelValues);

	return getModel(exampleSet, labelValues, meanVectors, inverseCovariance, getAprioriProbabilities(exampleSet, labelValues));
}
 
開發者ID:rapidminer,項目名稱:rapidminer-5,代碼行數:21,代碼來源:LinearDiscriminantAnalysis.java


注:本文中的com.rapidminer.example.table.NominalMapping.mapIndex方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。