當前位置: 首頁>>代碼示例>>Java>>正文


Java AlgoZart.printStatistics方法代碼示例

本文整理匯總了Java中ca.pfv.spmf.algorithms.frequentpatterns.zart.AlgoZart.printStatistics方法的典型用法代碼示例。如果您正苦於以下問題:Java AlgoZart.printStatistics方法的具體用法?Java AlgoZart.printStatistics怎麽用?Java AlgoZart.printStatistics使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在ca.pfv.spmf.algorithms.frequentpatterns.zart.AlgoZart的用法示例。


在下文中一共展示了AlgoZart.printStatistics方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: runAlgorithm

import ca.pfv.spmf.algorithms.frequentpatterns.zart.AlgoZart; //導入方法依賴的package包/類
@Override
public void runAlgorithm(String[] parameters, String inputFile, String outputFile) throws IOException {

	System.out.println("STEP 1: APPLY ZART TO FIND CLOSED ITEMSETS AND GENERATORS");
	double minsup = getParamAsDouble(parameters[0]);
	double minconf = getParamAsDouble(parameters[1]);
	TransactionDatabase database = new TransactionDatabase();
	try {
		database.loadFile(inputFile);
	} catch (Exception e) {
		e.printStackTrace();
	}
	
	// Applying the Zart algorithm
	AlgoZart zart = new AlgoZart();
	TZTableClosed results = zart.runAlgorithm(database, minsup);
	zart.printStatistics();
	
	System.out.println("STEP 2 : CALCULATING MNR ASSOCIATION RULES");
	// Run the algorithm to generate MNR rules
	AlgoMNRRules algoMNR = new AlgoMNRRules();
	algoMNR.runAlgorithm(outputFile, minconf, results, database.size());
	algoMNR.printStatistics();
}
 
開發者ID:matfax,項目名稱:spmf,代碼行數:25,代碼來源:DescriptionAlgoMNRAssociationRules.java

示例2: runAlgorithm

import ca.pfv.spmf.algorithms.frequentpatterns.zart.AlgoZart; //導入方法依賴的package包/類
@Override
public void runAlgorithm(String[] parameters, String inputFile, String outputFile) throws IOException {
	double minsup = getParamAsDouble(parameters[0]);
	double minconf = getParamAsDouble(parameters[1]);

	TransactionDatabase database = new TransactionDatabase();
	try {
		database.loadFile(inputFile);
	} catch (Exception e) {
		e.printStackTrace();
	}

	// Applying the Zart algorithm
	AlgoZart zart = new AlgoZart();
	TZTableClosed results = zart.runAlgorithm(database, minsup);
	zart.printStatistics();
	// Generate IGB association rules
	AlgoIGB algoIGB = new AlgoIGB();
	algoIGB.runAlgorithm(results, database.getTransactions().size(),
			minconf, outputFile);
	algoIGB.printStatistics();
}
 
開發者ID:matfax,項目名稱:spmf,代碼行數:23,代碼來源:DescriptionAlgoIGBAssociationRules.java

示例3: main

import ca.pfv.spmf.algorithms.frequentpatterns.zart.AlgoZart; //導入方法依賴的package包/類
public static void main(String[] args) throws IOException {
	System.out.println("STEP 1 : EXECUTING THE ZART ALGORITHM TO FIND CLOSED ITEMSETS AND MINIMUM GENERATORS");
	String input = fileToPath("contextIGB.txt");
	String output = "C:\\patterns\\IGB_association_rules.txt";
	
	TransactionDatabase database = new TransactionDatabase();
	try {
		database.loadFile(input);
	} catch (Exception e) {
		e.printStackTrace();
	}
	
	// Applying the Zart algorithm
	AlgoZart zart = new AlgoZart();
	double minsup = 0.5;
	TZTableClosed results = zart.runAlgorithm(database, minsup);
	zart.printStatistics();
	
	System.out.println("STEP 2 : RUNNING THE IGB ALGORITHM");
	// Apply the IGB algorithm
	double minconf = 0.61; // minimum confidence
	AlgoIGB algoIGB = new AlgoIGB();
	algoIGB.runAlgorithm(results, database.getTransactions().size(), minconf, output);
	algoIGB.printStatistics();
}
 
開發者ID:YinYanfei,項目名稱:CadalWorkspace,代碼行數:26,代碼來源:MainTestIGB_saveToFile.java

示例4: main

import ca.pfv.spmf.algorithms.frequentpatterns.zart.AlgoZart; //導入方法依賴的package包/類
public static void main(String[] args) throws IOException {

		String input = fileToPath("contextZart.txt");  // the database
		String output = "C://patterns//zart_output.txt";  // the path for saving the frequent itemsets found
		
		// Load a binary context
		TransactionDatabase context = new TransactionDatabase();
		context.loadFile(input);

		// Apply the Zart algorithm
		double minsup = 0.4;
		AlgoZart zart = new AlgoZart();
		TZTableClosed results = zart.runAlgorithm(context, minsup);
		TFTableFrequent frequents = zart.getTableFrequent();
		zart.printStatistics();
		zart.saveResultsToFile(output);
			
	}
 
開發者ID:YinYanfei,項目名稱:CadalWorkspace,代碼行數:19,代碼來源:MainTestZart_saveToFile.java

示例5: runAlgorithm

import ca.pfv.spmf.algorithms.frequentpatterns.zart.AlgoZart; //導入方法依賴的package包/類
@Override
public void runAlgorithm(String[] parameters, String inputFile, String outputFile) throws IOException {
	double minsup = getParamAsDouble(parameters[0]);

	// Load a binary context
	TransactionDatabase context = new TransactionDatabase();
	context.loadFile(inputFile);

	// Apply the Zart algorithm
	AlgoZart zart = new AlgoZart();
	zart.runAlgorithm(context, minsup);
	zart.printStatistics();
	zart.saveResultsToFile(outputFile);
}
 
開發者ID:matfax,項目名稱:spmf,代碼行數:15,代碼來源:DescriptionAlgoZart.java

示例6: main

import ca.pfv.spmf.algorithms.frequentpatterns.zart.AlgoZart; //導入方法依賴的package包/類
public static void main(String[] args) throws IOException {
	System.out.println("STEP 1 : EXECUTING THE ZART ALGORITHM TO FIND CLOSED ITEMSETS AND MINIMUM GENERATORS");
	String input = fileToPath("contextIGB.txt");
	String output = null;
	// Note : we set the output to null because we choose to keep 
	// the result into memory instead of saving to a file, for this
	// example.
	
	TransactionDatabase database = new TransactionDatabase();
	try {
		database.loadFile(input);
	} catch (Exception e) {
		e.printStackTrace();
	}
	
	// Applying the Zart algorithm
	AlgoZart zart = new AlgoZart();
	double minsup = 0.5;
	TZTableClosed results = zart.runAlgorithm(database, minsup);
	zart.printStatistics();
	
	System.out.println("STEP 2 : RUNNING THE IGB ALGORITHM");
	// Apply the IGB algorithm
	double minconf = 0.61; // minimum confidence
	AlgoIGB algoIGB = new AlgoIGB();
	Rules rules = algoIGB.runAlgorithm(results, database.getTransactions().size(), minconf,output);
	algoIGB.printStatistics();
	rules.printRules(database.getTransactions().size());
}
 
開發者ID:YinYanfei,項目名稱:CadalWorkspace,代碼行數:30,代碼來源:MainTestIGB_saveToMemory.java

示例7: main

import ca.pfv.spmf.algorithms.frequentpatterns.zart.AlgoZart; //導入方法依賴的package包/類
public static void main(String[] args) throws IOException {

		System.out.println("STEP 1 : EXECUTING THE ZART ALGORITHM TO FIND CLOSED ITEMSETS AND MINIMUM GENERATORS");
		String input = fileToPath("contextZart.txt");
		String output = null;
		// Note, above, we set the output file path to null
		// because we want to keep the result into memory for this example

		double minsup = 0.6;  // minimum support
		double minconf = 0.6; // minimum confidence
		
		TransactionDatabase database = new TransactionDatabase();
		try {
			database.loadFile(input);
		} catch (Exception e) {
			e.printStackTrace();
		}
		database.printDatabase();
		
		// Applying the Zart algorithm
		AlgoZart zart = new AlgoZart();
		TZTableClosed results = zart.runAlgorithm(database, minsup);
		zart.printStatistics();
		
//		// PRINT RESULTS FROM THE ZART ALGORITHM
//		int countClosed=0;
//		int countGenerators=0;
//		System.out.println("===================");
//		for(int i=0; i< results.levels.size(); i++){
//			System.out.println("LEVEL : " + i);
//			for(Itemset closed : results.levels.get(i)){
//				System.out.println(" CLOSED : " + closed.toString() + "  supp : " + closed.getAbsoluteSupport());
//				countClosed++;
//				System.out.println("   GENERATORS : ");
//					for(Itemset generator : results.mapGenerators.get(closed)){
//						countGenerators++;
//						System.out.println("     =" + generator.toString());
//					}
//			}
//		}
		
		System.out.println("STEP 2 : CALCULATING MNR ASSOCIATION RULES");
		// Create MNR rules.
		AlgoMNRRules algoMNR = new AlgoMNRRules();
		Rules rules = 	algoMNR.runAlgorithm(output, minconf, results, database.size());
		rules.printRules(database.size());
	}
 
開發者ID:YinYanfei,項目名稱:CadalWorkspace,代碼行數:48,代碼來源:MainTestMNRRules_saveToMemory.java

示例8: main

import ca.pfv.spmf.algorithms.frequentpatterns.zart.AlgoZart; //導入方法依賴的package包/類
public static void main(String[] args) throws IOException {

		// Load a binary context
		TransactionDatabase context = new TransactionDatabase();
		context.loadFile(fileToPath("contextZart.txt"));

		// Apply the Zart algorithm
		double minsup = 0.4;
		AlgoZart zart = new AlgoZart();
		TZTableClosed results = zart.runAlgorithm(context, minsup);
		TFTableFrequent frequents = zart.getTableFrequent();
		zart.printStatistics();
		
		// PRINTING RESULTS
		int countClosed=0;
		int countGenerators=0;
		System.out.println("======= List of closed itemsets and their generators ============");
		for(int i=0; i< results.levels.size(); i++){
			System.out.println("LEVEL (SIZE) : " + i);
			for(Itemset closed : results.levels.get(i)){
				System.out.println(" CLOSED : " + closed.toString() + "  supp : " + closed.getAbsoluteSupport());
				countClosed++;
				System.out.println("   GENERATORS : ");
					for(Itemset generator : results.mapGenerators.get(closed)){
						countGenerators++;
						System.out.println("     =" + generator.toString());
					}
			}
		}
		System.out.println(" NUMBER OF CLOSED : " + countClosed +  " NUMBER OF GENERATORS : " + countGenerators );
		
		// SECOND, WE PRINT THE LIST OF ALL FREQUENT ITEMSETS
		System.out.println("======= List of all frequent itemsets ============");
		int countFrequent =0;
		for(int i=0; i< frequents.levels.size(); i++){
			System.out.println("LEVEL (SIZE) : " + i);
			for(Itemset itemset : frequents.levels.get(i)){
				countFrequent++;
				System.out.println(" ITEMSET : " + itemset.toString() + "  supp : " + itemset.getAbsoluteSupport());
			}
		}
		System.out.println("NB OF FREQUENT ITEMSETS : " + countFrequent);
		
	}
 
開發者ID:YinYanfei,項目名稱:CadalWorkspace,代碼行數:45,代碼來源:MainTestZart_saveToMemory.java

示例9: main

import ca.pfv.spmf.algorithms.frequentpatterns.zart.AlgoZart; //導入方法依賴的package包/類
public static void main(String[] args) throws IOException {

		System.out.println("STEP 1 : EXECUTING THE ZART ALGORITHM TO FIND CLOSED ITEMSETS AND MINIMUM GENERATORS");
		String input = fileToPath("contextZart.txt");
		String output = "C:\\patterns\\MNR_association_rules.txt";
//		
		double minsup = 0.6;  // minimum support
		double minconf = 0.6; // minimum confidence
		
		TransactionDatabase database = new TransactionDatabase();
		try {
			database.loadFile(input);
		} catch (Exception e) {
			e.printStackTrace();
		}
		database.printDatabase();
		
		// Applying the Zart algorithm
		AlgoZart zart = new AlgoZart();
		TZTableClosed results = zart.runAlgorithm(database, minsup);
		zart.printStatistics();
		
//		// PRINT RESULTS FROM THE ZART ALGORITHM
//		int countClosed=0;
//		int countGenerators=0;
//		System.out.println("===================");
//		for(int i=0; i< results.levels.size(); i++){
//			System.out.println("LEVEL : " + i);
//			for(Itemset closed : results.levels.get(i)){
//				System.out.println(" CLOSED : " + closed.toString() + "  supp : " + closed.getAbsoluteSupport());
//				countClosed++;
//				System.out.println("   GENERATORS : ");
//					for(Itemset generator : results.mapGenerators.get(closed)){
//						countGenerators++;
//						System.out.println("     =" + generator.toString());
//					}
//			}
//		}
		
		System.out.println("STEP 2 : CALCULATING MNR ASSOCIATION RULES");
		// Run the algorithm to generate MNR rules
		AlgoMNRRules algoMNR = new AlgoMNRRules();
		algoMNR.runAlgorithm(output, minconf, results, database.size());
	}
 
開發者ID:YinYanfei,項目名稱:CadalWorkspace,代碼行數:45,代碼來源:MainTestMNRRules_saveToFile.java


注:本文中的ca.pfv.spmf.algorithms.frequentpatterns.zart.AlgoZart.printStatistics方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。