本文整理匯總了Java中smile.validation.CrossValidation類的典型用法代碼示例。如果您正苦於以下問題:Java CrossValidation類的具體用法?Java CrossValidation怎麽用?Java CrossValidation使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
CrossValidation類屬於smile.validation包,在下文中一共展示了CrossValidation類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: testWSJ
import smile.validation.CrossValidation; //導入依賴的package包/類
/**
* Test of learn method, of class HMMPOSTagger.
*/
@Test
public void testWSJ() {
System.out.println("WSJ");
load("D:\\sourceforge\\corpora\\PennTreebank\\PennTreebank2\\TAGGED\\POS\\WSJ");
String[][] x = sentences.toArray(new String[sentences.size()][]);
PennTreebankPOS[][] y = labels.toArray(new PennTreebankPOS[labels.size()][]);
int n = x.length;
int k = 10;
CrossValidation cv = new CrossValidation(n, k);
int error = 0;
int total = 0;
for (int i = 0; i < k; i++) {
String[][] trainx = Math.slice(x, cv.train[i]);
PennTreebankPOS[][] trainy = Math.slice(y, cv.train[i]);
String[][] testx = Math.slice(x, cv.test[i]);
PennTreebankPOS[][] testy = Math.slice(y, cv.test[i]);
HMMPOSTagger tagger = HMMPOSTagger.learn(trainx, trainy);
for (int j = 0; j < testx.length; j++) {
PennTreebankPOS[] label = tagger.tag(testx[j]);
total += label.length;
for (int l = 0; l < label.length; l++) {
if (label[l] != testy[j][l]) {
error++;
}
}
}
}
System.out.format("Error rate = %.2f as %d of %d\n", 100.0 * error / total, error, total);
}
示例2: testBrown
import smile.validation.CrossValidation; //導入依賴的package包/類
/**
* Test of learn method, of class HMMPOSTagger.
*/
@Test
public void testBrown() {
System.out.println("BROWN");
load("D:\\sourceforge\\corpora\\PennTreebank\\PennTreebank2\\TAGGED\\POS\\BROWN");
String[][] x = sentences.toArray(new String[sentences.size()][]);
PennTreebankPOS[][] y = labels.toArray(new PennTreebankPOS[labels.size()][]);
int n = x.length;
int k = 10;
CrossValidation cv = new CrossValidation(n, k);
int error = 0;
int total = 0;
for (int i = 0; i < k; i++) {
String[][] trainx = Math.slice(x, cv.train[i]);
PennTreebankPOS[][] trainy = Math.slice(y, cv.train[i]);
String[][] testx = Math.slice(x, cv.test[i]);
PennTreebankPOS[][] testy = Math.slice(y, cv.test[i]);
HMMPOSTagger tagger = HMMPOSTagger.learn(trainx, trainy);
for (int j = 0; j < testx.length; j++) {
PennTreebankPOS[] label = tagger.tag(testx[j]);
total += label.length;
for (int l = 0; l < label.length; l++) {
if (label[l] != testy[j][l]) {
error++;
}
}
}
}
System.out.format("Error rate = %.2f as %d of %d\n", 100.0 * error / total, error, total);
}
示例3: testLearnMultinomial
import smile.validation.CrossValidation; //導入依賴的package包/類
/**
* Test of learn method, of class SequenceNaiveBayes.
*/
@Test
public void testLearnMultinomial() {
System.out.println("batch learn Multinomial");
double[][] x = moviex;
int[] y = moviey;
int n = x.length;
int k = 10;
CrossValidation cv = new CrossValidation(n, k);
int error = 0;
int total = 0;
for (int i = 0; i < k; i++) {
double[][] trainx = Math.slice(x, cv.train[i]);
int[] trainy = Math.slice(y, cv.train[i]);
NaiveBayes bayes = new NaiveBayes(NaiveBayes.Model.MULTINOMIAL, 2, feature.length);
bayes.learn(trainx, trainy);
double[][] testx = Math.slice(x, cv.test[i]);
int[] testy = Math.slice(y, cv.test[i]);
for (int j = 0; j < testx.length; j++) {
int label = bayes.predict(testx[j]);
if (label != -1) {
total++;
if (testy[j] != label) {
error++;
}
}
}
}
System.out.format("Multinomial error = %d of %d%n", error, total);
assertTrue(error < 265);
}
示例4: testLearnMultinomial2
import smile.validation.CrossValidation; //導入依賴的package包/類
/**
* Test of learn method, of class SequenceNaiveBayes.
*/
@Test
public void testLearnMultinomial2() {
System.out.println("online learn Multinomial");
double[][] x = moviex;
int[] y = moviey;
int n = x.length;
int k = 10;
CrossValidation cv = new CrossValidation(n, k);
int error = 0;
int total = 0;
for (int i = 0; i < k; i++) {
double[][] trainx = Math.slice(x, cv.train[i]);
int[] trainy = Math.slice(y, cv.train[i]);
NaiveBayes bayes = new NaiveBayes(NaiveBayes.Model.MULTINOMIAL, 2, feature.length);
for (int j = 0; j < trainx.length; j++) {
bayes.learn(trainx[j], trainy[j]);
}
double[][] testx = Math.slice(x, cv.test[i]);
int[] testy = Math.slice(y, cv.test[i]);
for (int j = 0; j < testx.length; j++) {
int label = bayes.predict(testx[j]);
if (label != -1) {
total++;
if (testy[j] != label) {
error++;
}
}
}
}
System.out.format("Multinomial error = %d of %d%n", error, total);
assertTrue(error < 265);
}
示例5: testLearnBernoulli
import smile.validation.CrossValidation; //導入依賴的package包/類
/**
* Test of learn method, of class SequenceNaiveBayes.
*/
@Test
public void testLearnBernoulli() {
System.out.println("batch learn Bernoulli");
double[][] x = moviex;
int[] y = moviey;
int n = x.length;
int k = 10;
CrossValidation cv = new CrossValidation(n, k);
int error = 0;
int total = 0;
for (int i = 0; i < k; i++) {
double[][] trainx = Math.slice(x, cv.train[i]);
int[] trainy = Math.slice(y, cv.train[i]);
NaiveBayes bayes = new NaiveBayes(NaiveBayes.Model.BERNOULLI, 2, feature.length);
bayes.learn(trainx, trainy);
double[][] testx = Math.slice(x, cv.test[i]);
int[] testy = Math.slice(y, cv.test[i]);
for (int j = 0; j < testx.length; j++) {
int label = bayes.predict(testx[j]);
if (label != -1) {
total++;
if (testy[j] != label) {
error++;
}
}
}
}
System.out.format("Bernoulli error = %d of %d%n", error, total);
assertTrue(error < 270);
}
示例6: testLearnBernoulli2
import smile.validation.CrossValidation; //導入依賴的package包/類
/**
* Test of learn method, of class SequenceNaiveBayes.
*/
@Test
public void testLearnBernoulli2() {
System.out.println("online learn Bernoulli");
double[][] x = moviex;
int[] y = moviey;
int n = x.length;
int k = 10;
CrossValidation cv = new CrossValidation(n, k);
int error = 0;
int total = 0;
for (int i = 0; i < k; i++) {
double[][] trainx = Math.slice(x, cv.train[i]);
int[] trainy = Math.slice(y, cv.train[i]);
NaiveBayes bayes = new NaiveBayes(NaiveBayes.Model.BERNOULLI, 2, feature.length);
for (int j = 0; j < trainx.length; j++) {
bayes.learn(trainx[j], trainy[j]);
}
double[][] testx = Math.slice(x, cv.test[i]);
int[] testy = Math.slice(y, cv.test[i]);
for (int j = 0; j < testx.length; j++) {
int label = bayes.predict(testx[j]);
if (label != -1) {
total++;
if (testy[j] != label) {
error++;
}
}
}
}
System.out.format("Bernoulli error = %d of %d%n", error, total);
assertTrue(error < 270);
}
示例7: test
import smile.validation.CrossValidation; //導入依賴的package包/類
public void test(String dataset, String url, int response) {
System.out.println(dataset);
ArffParser parser = new ArffParser();
parser.setResponseIndex(response);
try {
AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile(url));
double[] datay = data.toArray(new double[data.size()]);
double[][] datax = data.toArray(new double[data.size()][]);
int n = datax.length;
int k = 10;
CrossValidation cv = new CrossValidation(n, k);
double rss = 0.0;
double ad = 0.0;
for (int i = 0; i < k; i++) {
double[][] trainx = Math.slice(datax, cv.train[i]);
double[] trainy = Math.slice(datay, cv.train[i]);
double[][] testx = Math.slice(datax, cv.test[i]);
double[] testy = Math.slice(datay, cv.test[i]);
RegressionTree tree = new RegressionTree(data.attributes(), trainx, trainy, 20);
for (int j = 0; j < testx.length; j++) {
double r = testy[j] - tree.predict(testx[j]);
rss += r * r;
ad += Math.abs(r);
}
}
System.out.format("10-CV RMSE = %.4f \t AbsoluteDeviation = %.4f%n", Math.sqrt(rss/n), ad/n);
} catch (Exception ex) {
System.err.println(ex);
}
}
示例8: test
import smile.validation.CrossValidation; //導入依賴的package包/類
public void test(GradientTreeBoost.Loss loss, String dataset, String url, int response) {
System.out.println(dataset + "\t" + loss);
ArffParser parser = new ArffParser();
parser.setResponseIndex(response);
try {
AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile(url));
double[] datay = data.toArray(new double[data.size()]);
double[][] datax = data.toArray(new double[data.size()][]);
int n = datax.length;
int k = 10;
CrossValidation cv = new CrossValidation(n, k);
double rss = 0.0;
double ad = 0.0;
for (int i = 0; i < k; i++) {
double[][] trainx = Math.slice(datax, cv.train[i]);
double[] trainy = Math.slice(datay, cv.train[i]);
double[][] testx = Math.slice(datax, cv.test[i]);
double[] testy = Math.slice(datay, cv.test[i]);
GradientTreeBoost boost = new GradientTreeBoost(data.attributes(), trainx, trainy, loss, 100, 6, 0.05, 0.7);
for (int j = 0; j < testx.length; j++) {
double r = testy[j] - boost.predict(testx[j]);
ad += Math.abs(r);
rss += r * r;
}
}
System.out.format("10-CV RMSE = %.4f \t AbsoluteDeviation = %.4f%n", Math.sqrt(rss/n), ad/n);
} catch (Exception ex) {
System.err.println(ex);
}
}
示例9: testCPU
import smile.validation.CrossValidation; //導入依賴的package包/類
/**
* Test of learn method, of class SVR.
*/
@Test
public void testCPU() {
System.out.println("CPU");
ArffParser parser = new ArffParser();
parser.setResponseIndex(6);
try {
AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/cpu.arff"));
double[] datay = data.toArray(new double[data.size()]);
double[][] datax = data.toArray(new double[data.size()][]);
Math.standardize(datax);
int n = datax.length;
int k = 10;
CrossValidation cv = new CrossValidation(n, k);
double rss = 0.0;
for (int i = 0; i < k; i++) {
double[][] trainx = Math.slice(datax, cv.train[i]);
double[] trainy = Math.slice(datay, cv.train[i]);
double[][] testx = Math.slice(datax, cv.test[i]);
double[] testy = Math.slice(datay, cv.test[i]);
SVR<double[]> svr = new SVR<>(trainx, trainy, new PolynomialKernel(3, 1.0, 1.0), 0.1, 1.0);
for (int j = 0; j < testx.length; j++) {
double r = testy[j] - svr.predict(testx[j]);
rss += r * r;
}
}
System.out.println("10-CV RMSE = " + Math.sqrt(rss / n));
} catch (Exception ex) {
System.err.println(ex);
}
}
示例10: testCPU
import smile.validation.CrossValidation; //導入依賴的package包/類
/**
* Test of learn method, of class LinearRegression.
*/
@Test
public void testCPU() {
System.out.println("CPU");
ArffParser parser = new ArffParser();
parser.setResponseIndex(6);
try {
AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/cpu.arff"));
double[][] datax = data.toArray(new double[data.size()][]);
double[] datay = data.toArray(new double[data.size()]);
int n = datax.length;
int k = 10;
CrossValidation cv = new CrossValidation(n, k);
double rss = 0.0;
for (int i = 0; i < k; i++) {
double[][] trainx = Math.slice(datax, cv.train[i]);
double[] trainy = Math.slice(datay, cv.train[i]);
double[][] testx = Math.slice(datax, cv.test[i]);
double[] testy = Math.slice(datay, cv.test[i]);
RidgeRegression ridge = new RidgeRegression(trainx, trainy, 10.0);
for (int j = 0; j < testx.length; j++) {
double r = testy[j] - ridge.predict(testx[j]);
rss += r * r;
}
}
System.out.println("10-CV MSE = " + rss / n);
} catch (Exception ex) {
System.err.println(ex);
}
}
示例11: test
import smile.validation.CrossValidation; //導入依賴的package包/類
public void test(String dataset, String url, int response) {
System.out.println(dataset);
ArffParser parser = new ArffParser();
parser.setResponseIndex(response);
try {
AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile(url));
double[] datay = data.toArray(new double[data.size()]);
double[][] datax = data.toArray(new double[data.size()][]);
int n = datax.length;
int k = 10;
CrossValidation cv = new CrossValidation(n, k);
double rss = 0.0;
double ad = 0.0;
for (int i = 0; i < k; i++) {
double[][] trainx = Math.slice(datax, cv.train[i]);
double[] trainy = Math.slice(datay, cv.train[i]);
double[][] testx = Math.slice(datax, cv.test[i]);
double[] testy = Math.slice(datay, cv.test[i]);
RandomForest forest = new RandomForest(data.attributes(), trainx, trainy, 200, n, 5, trainx[0].length/3);
System.out.format("OOB error rate = %.4f%n", forest.error());
for (int j = 0; j < testx.length; j++) {
double r = testy[j] - forest.predict(testx[j]);
rss += r * r;
ad += Math.abs(r);
}
}
System.out.format("10-CV RMSE = %.4f \t AbsoluteDeviation = %.4f%n", Math.sqrt(rss/n), ad/n);
} catch (Exception ex) {
System.err.println(ex);
}
}
示例12: testCPU
import smile.validation.CrossValidation; //導入依賴的package包/類
/**
* Test of learn method, of class RBFNetwork.
*/
@Test
public void testCPU() {
System.out.println("CPU");
ArffParser parser = new ArffParser();
parser.setResponseIndex(6);
try {
AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/cpu.arff"));
double[] datay = data.toArray(new double[data.size()]);
double[][] datax = data.toArray(new double[data.size()][]);
Math.standardize(datax);
int n = datax.length;
int k = 10;
CrossValidation cv = new CrossValidation(n, k);
double rss = 0.0;
for (int i = 0; i < k; i++) {
double[][] trainx = Math.slice(datax, cv.train[i]);
double[] trainy = Math.slice(datay, cv.train[i]);
double[][] testx = Math.slice(datax, cv.test[i]);
double[] testy = Math.slice(datay, cv.test[i]);
double[][] centers = new double[20][];
RadialBasisFunction[] basis = SmileUtils.learnGaussianRadialBasis(trainx, centers, 5.0);
RBFNetwork<double[]> rbf = new RBFNetwork<>(trainx, trainy, new EuclideanDistance(), basis, centers);
for (int j = 0; j < testx.length; j++) {
double r = testy[j] - rbf.predict(testx[j]);
rss += r * r;
}
}
System.out.println("10-CV MSE = " + rss / n);
} catch (Exception ex) {
System.err.println(ex);
}
}
示例13: test2DPlanes
import smile.validation.CrossValidation; //導入依賴的package包/類
/**
* Test of learn method, of class RBFNetwork.
*/
@Test
public void test2DPlanes() {
System.out.println("2dplanes");
ArffParser parser = new ArffParser();
parser.setResponseIndex(10);
try {
AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/regression/2dplanes.arff"));
double[] datay = data.toArray(new double[data.size()]);
double[][] datax = data.toArray(new double[data.size()][]);
//Math.normalize(datax);
int n = datax.length;
int k = 10;
CrossValidation cv = new CrossValidation(n, k);
double rss = 0.0;
for (int i = 0; i < k; i++) {
double[][] trainx = Math.slice(datax, cv.train[i]);
double[] trainy = Math.slice(datay, cv.train[i]);
double[][] testx = Math.slice(datax, cv.test[i]);
double[] testy = Math.slice(datay, cv.test[i]);
double[][] centers = new double[20][];
RadialBasisFunction[] basis = SmileUtils.learnGaussianRadialBasis(trainx, centers, 5.0);
RBFNetwork<double[]> rbf = new RBFNetwork<>(trainx, trainy, new EuclideanDistance(), basis, centers);
for (int j = 0; j < testx.length; j++) {
double r = testy[j] - rbf.predict(testx[j]);
rss += r * r;
}
}
System.out.println("10-CV MSE = " + rss / n);
} catch (Exception ex) {
System.err.println(ex);
}
}
示例14: testBank32nh
import smile.validation.CrossValidation; //導入依賴的package包/類
/**
* Test of learn method, of class RBFNetwork.
*/
@Test
public void testBank32nh() {
System.out.println("bank32nh");
ArffParser parser = new ArffParser();
parser.setResponseIndex(31);
try {
AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/regression/bank32nh.arff"));
double[] datay = data.toArray(new double[data.size()]);
double[][] datax = data.toArray(new double[data.size()][]);
Math.standardize(datax);
int n = datax.length;
int k = 10;
CrossValidation cv = new CrossValidation(n, k);
double rss = 0.0;
for (int i = 0; i < k; i++) {
double[][] trainx = Math.slice(datax, cv.train[i]);
double[] trainy = Math.slice(datay, cv.train[i]);
double[][] testx = Math.slice(datax, cv.test[i]);
double[] testy = Math.slice(datay, cv.test[i]);
double[][] centers = new double[20][];
RadialBasisFunction[] basis = SmileUtils.learnGaussianRadialBasis(trainx, centers, 5.0);
RBFNetwork<double[]> rbf = new RBFNetwork<>(trainx, trainy, new EuclideanDistance(), basis, centers);
for (int j = 0; j < testx.length; j++) {
double r = testy[j] - rbf.predict(testx[j]);
rss += r * r;
}
}
System.out.println("10-CV MSE = " + rss / n);
} catch (Exception ex) {
System.err.println(ex);
}
}
示例15: testCPU
import smile.validation.CrossValidation; //導入依賴的package包/類
/**
* Test of learn method, of class LinearRegression.
*/
@Test
public void testCPU() {
System.out.println("CPU");
ArffParser parser = new ArffParser();
parser.setResponseIndex(6);
try {
AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/cpu.arff"));
double[][] datax = data.toArray(new double[data.size()][]);
double[] datay = data.toArray(new double[data.size()]);
int n = datax.length;
int k = 10;
CrossValidation cv = new CrossValidation(n, k);
double rss = 0.0;
for (int i = 0; i < k; i++) {
double[][] trainx = Math.slice(datax, cv.train[i]);
double[] trainy = Math.slice(datay, cv.train[i]);
double[][] testx = Math.slice(datax, cv.test[i]);
double[] testy = Math.slice(datay, cv.test[i]);
OLS linear = new OLS(trainx, trainy);
for (int j = 0; j < testx.length; j++) {
double r = testy[j] - linear.predict(testx[j]);
rss += r * r;
}
}
System.out.println("MSE = " + rss / n);
} catch (Exception ex) {
System.err.println(ex);
}
}