當前位置: 首頁>>代碼示例>>Java>>正文


Java AvroParquetInputFormat類代碼示例

本文整理匯總了Java中parquet.avro.AvroParquetInputFormat的典型用法代碼示例。如果您正苦於以下問題:Java AvroParquetInputFormat類的具體用法?Java AvroParquetInputFormat怎麽用?Java AvroParquetInputFormat使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


AvroParquetInputFormat類屬於parquet.avro包,在下文中一共展示了AvroParquetInputFormat類的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: run

import parquet.avro.AvroParquetInputFormat; //導入依賴的package包/類
/**
 * The MapReduce driver - setup and launch the job.
 *
 * @param args the command-line arguments
 * @return the process exit code
 * @throws Exception if something goes wrong
 */
public int run(final String[] args) throws Exception {

  Cli cli = Cli.builder().setArgs(args).addOptions(CliCommonOpts.MrIoOpts.values()).build();
  int result = cli.runCmd();

  if (result != 0) {
    return result;
  }

  Path inputPath = new Path(cli.getArgValueAsString(CliCommonOpts.MrIoOpts.INPUT));
  Path outputPath = new Path(cli.getArgValueAsString(CliCommonOpts.MrIoOpts.OUTPUT));

  Configuration conf = super.getConf();

  Job job = new Job(conf);
  job.setJarByClass(AvroParquetMapReduce.class);

  job.setInputFormatClass(AvroParquetInputFormat.class);
  AvroParquetInputFormat.setInputPaths(job, inputPath);

  job.setMapperClass(Map.class);
  job.setReducerClass(Reduce.class);

  job.setMapOutputKeyClass(Text.class);
  job.setMapOutputValueClass(DoubleWritable.class);

  job.setOutputFormatClass(AvroParquetOutputFormat.class);
  FileOutputFormat.setOutputPath(job, outputPath);
  AvroParquetOutputFormat.setSchema(job, StockAvg.SCHEMA$);

  return job.waitForCompletion(true) ? 0 : 1;
}
 
開發者ID:Hanmourang,項目名稱:hiped2,代碼行數:40,代碼來源:AvroParquetMapReduce.java

示例2: run

import parquet.avro.AvroParquetInputFormat; //導入依賴的package包/類
/**
 * The MapReduce driver - setup and launch the job.
 *
 * @param args the command-line arguments
 * @return the process exit code
 * @throws Exception if something goes wrong
 */
public int run(final String[] args) throws Exception {

  Cli cli = Cli.builder().setArgs(args).addOptions(CliCommonOpts.MrIoOpts.values()).build();
  int result = cli.runCmd();

  if (result != 0) {
    return result;
  }

  Path inputPath = new Path(cli.getArgValueAsString(CliCommonOpts.MrIoOpts.INPUT));
  Path outputPath = new Path(cli.getArgValueAsString(CliCommonOpts.MrIoOpts.OUTPUT));

  Configuration conf = super.getConf();

  Job job = new Job(conf);
  job.setJarByClass(AvroGenericParquetMapReduce.class);

  job.setInputFormatClass(AvroParquetInputFormat.class);
  AvroParquetInputFormat.setInputPaths(job, inputPath);

  // force Avro to supply us GenericRecord objects in the mapper by mutating the
  // schema and changing the class name
  //
  Schema schema = Schema.createRecord("foobar",
      Stock.SCHEMA$.getDoc(), Stock.SCHEMA$.getNamespace(), false);
  List<Schema.Field> fields = Lists.newArrayList();
  for (Schema.Field field : Stock.SCHEMA$.getFields()) {
    fields.add(new Schema.Field(field.name(), field.schema(), field.doc(),
        field.defaultValue(), field.order()));
  }
  schema.setFields(fields);

  AvroParquetInputFormat.setAvroReadSchema(job, schema);

  job.setMapperClass(Map.class);

  job.setOutputKeyClass(Void.class);
  job.setOutputValueClass(GenericRecord.class);

  job.setOutputFormatClass(AvroParquetOutputFormat.class);
  FileOutputFormat.setOutputPath(job, outputPath);
  AvroParquetOutputFormat.setSchema(job, avroSchema);

  job.setNumReduceTasks(0);

  return job.waitForCompletion(true) ? 0 : 1;
}
 
開發者ID:Hanmourang,項目名稱:hiped2,代碼行數:55,代碼來源:AvroGenericParquetMapReduce.java

示例3: run

import parquet.avro.AvroParquetInputFormat; //導入依賴的package包/類
/**
 * The MapReduce driver - setup and launch the job.
 *
 * @param args the command-line arguments
 * @return the process exit code
 * @throws Exception if something goes wrong
 */
public int run(final String[] args) throws Exception {

  Cli cli = Cli.builder().setArgs(args).addOptions(CliCommonOpts.MrIoOpts.values()).build();
  int result = cli.runCmd();

  if (result != 0) {
    return result;
  }

  Path inputPath = new Path(cli.getArgValueAsString(CliCommonOpts.MrIoOpts.INPUT));
  Path outputPath = new Path(cli.getArgValueAsString(CliCommonOpts.MrIoOpts.OUTPUT));

  Configuration conf = super.getConf();

  Job job = new Job(conf);
  job.setJarByClass(AvroProjectionParquetMapReduce.class);

  job.setInputFormatClass(AvroParquetInputFormat.class);
  AvroParquetInputFormat.setInputPaths(job, inputPath);

  // predicate pushdown
  AvroParquetInputFormat.setUnboundRecordFilter(job, GoogleStockFilter.class);

  // projection pushdown
  Schema projection = Schema.createRecord(Stock.SCHEMA$.getName(),
      Stock.SCHEMA$.getDoc(), Stock.SCHEMA$.getNamespace(), false);
  List<Schema.Field> fields = Lists.newArrayList();
  for (Schema.Field field : Stock.SCHEMA$.getFields()) {
    if ("symbol".equals(field.name()) || "open".equals(field.name())) {
      fields.add(new Schema.Field(field.name(), field.schema(), field.doc(),
          field.defaultValue(), field.order()));
    }
  }
  projection.setFields(fields);
  AvroParquetInputFormat.setRequestedProjection(job, projection);


  job.setMapperClass(Map.class);
  job.setReducerClass(Reduce.class);

  job.setMapOutputKeyClass(Text.class);
  job.setMapOutputValueClass(DoubleWritable.class);

  job.setOutputFormatClass(AvroParquetOutputFormat.class);
  FileOutputFormat.setOutputPath(job, outputPath);
  AvroParquetOutputFormat.setSchema(job, StockAvg.SCHEMA$);

  return job.waitForCompletion(true) ? 0 : 1;
}
 
開發者ID:Hanmourang,項目名稱:hiped2,代碼行數:57,代碼來源:AvroProjectionParquetMapReduce.java

示例4: readAvro

import parquet.avro.AvroParquetInputFormat; //導入依賴的package包/類
public static DataSet<Tuple2<Void, Person>> readAvro(ExecutionEnvironment env, String inputPath) throws
	IOException {
	Job job = Job.getInstance();

	HadoopInputFormat hadoopInputFormat = new HadoopInputFormat(new AvroParquetInputFormat(), Void.class, Person
		.class, job);

	FileInputFormat.addInputPath(job, new Path(inputPath));

	// schema projection: don't read type of phonenumber     
	Schema phone = Schema.createRecord("PhoneNumber", null, null, false);
	phone.setFields(Arrays.asList(
		new Schema.Field("number", Schema.create(Schema.Type.BYTES), null, null)));

	Schema array = Schema.createArray(phone);
	Schema union = Schema.createUnion(Lists.newArrayList(Schema.create(Schema.Type.BYTES), Schema.create(Schema
		.Type
		.NULL)));


	Schema projection = Schema.createRecord("Person", null, null, false);
	projection.setFields(
		Arrays.asList(
			new Schema.Field("name", Schema.create(Schema.Type.BYTES), null, null),
			new Schema.Field("id", Schema.create(Schema.Type.INT), null, null),
			new Schema.Field("email", union, null, null),
			new Schema.Field("phone", array, null, null)
		)
	);

	AvroParquetInputFormat.setRequestedProjection(job, projection);

	// push down predicates: get all persons with name = "Felix"
	BinaryColumn name = binaryColumn("name");
	FilterPredicate namePred = eq(name, Binary.fromString("Felix"));
	ParquetInputFormat.setFilterPredicate(job.getConfiguration(), namePred);

	DataSet<Tuple2<Void, Person>> data = env.createInput(hadoopInputFormat);

	return data;
}
 
開發者ID:FelixNeutatz,項目名稱:parquet-flinktacular,代碼行數:42,代碼來源:ParquetAvroExample.java


注:本文中的parquet.avro.AvroParquetInputFormat類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。