當前位置: 首頁>>代碼示例>>Java>>正文


Java SBXCrossover類代碼示例

本文整理匯總了Java中org.uma.jmetal.operator.impl.crossover.SBXCrossover的典型用法代碼示例。如果您正苦於以下問題:Java SBXCrossover類的具體用法?Java SBXCrossover怎麽用?Java SBXCrossover使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


SBXCrossover類屬於org.uma.jmetal.operator.impl.crossover包,在下文中一共展示了SBXCrossover類的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: ABYSSBuilder

import org.uma.jmetal.operator.impl.crossover.SBXCrossover; //導入依賴的package包/類
public ABYSSBuilder(DoubleProblem problem, Archive<DoubleSolution> archive){
  this.populationSize = 20;
  this.maxEvaluations = 25000;
  this.archiveSize = 100;
  this.refSet1Size = 10;
  this.refSet2Size = 10;
  this.numberOfSubranges = 4;
  this.problem = problem;
  double crossoverProbability = 0.9;
  double distributionIndex=20.0;
  this.crossoverOperator = new SBXCrossover(crossoverProbability,distributionIndex);
  double mutationProbability= 1.0/problem.getNumberOfVariables();
  this.mutationOperator = new PolynomialMutation(mutationProbability,distributionIndex);
  int improvementRounds= 1;
  this.archive =(CrowdingDistanceArchive<DoubleSolution>)archive;
  this.improvementOperator = new ArchiveMutationLocalSearch<>(improvementRounds,mutationOperator,this.archive,problem);
}
 
開發者ID:jMetal,項目名稱:jMetal,代碼行數:18,代碼來源:ABYSSBuilder.java

示例2: IBEABuilder

import org.uma.jmetal.operator.impl.crossover.SBXCrossover; //導入依賴的package包/類
/**
 * Constructor
 * @param problem
 */
public IBEABuilder(Problem<DoubleSolution> problem) {
  this.problem = problem;
  populationSize = 100;
  archiveSize = 100;
  maxEvaluations = 25000;

  double crossoverProbability = 0.9;
  double crossoverDistributionIndex = 20.0;
  crossover = new SBXCrossover(crossoverProbability, crossoverDistributionIndex);

  double mutationProbability = 1.0 / problem.getNumberOfVariables();
  double mutationDistributionIndex = 20.0;
  mutation = new PolynomialMutation(mutationProbability, mutationDistributionIndex);

  selection = new BinaryTournamentSelection<DoubleSolution>();
}
 
開發者ID:jMetal,項目名稱:jMetal,代碼行數:21,代碼來源:IBEABuilder.java

示例3: shouldSolutionCombinationProduceTheRightNumberOfSolutions

import org.uma.jmetal.operator.impl.crossover.SBXCrossover; //導入依賴的package包/類
@Test
public void shouldSolutionCombinationProduceTheRightNumberOfSolutions() {
  int populationSize = 10;
  int numberOfSubRanges = 4;
  int referenceSet1Size = 4;
  int referenceSet2Size = 4;

  DoubleProblem problem = new MockProblem();

  ABYSS abyss = new ABYSS(problem, 0, populationSize, referenceSet1Size, referenceSet2Size, 0, null,
      localSearch, new SBXCrossover(1.0, 20.0), numberOfSubRanges);

  abyss.initializationPhase();
  abyss.referenceSetUpdate();
  List<List<DoubleSolution>> list = abyss.subsetGeneration();
  List<DoubleSolution> combinedSolutions = abyss.solutionCombination(list) ;

  int expectedValue = combinedSolutions.size() / 2 ;

  assertEquals(expectedValue, list.size()) ;
}
 
開發者ID:jMetal,項目名稱:jMetal,代碼行數:22,代碼來源:ABYSSTest.java

示例4: shouldRestartCreateANewPopulationWithTheRefSet1Solutions

import org.uma.jmetal.operator.impl.crossover.SBXCrossover; //導入依賴的package包/類
@Test
public void shouldRestartCreateANewPopulationWithTheRefSet1Solutions() {
  int populationSize = 10;
  int numberOfSubRanges = 4;
  int referenceSet1Size = 4;
  int referenceSet2Size = 4;

  DoubleProblem problem = new MockProblem();

  ABYSS abyss = new ABYSS(problem, 0, populationSize, referenceSet1Size, referenceSet2Size, 10,
      new CrowdingDistanceArchive<DoubleSolution>(10),
      localSearch, new SBXCrossover(1.0, 20.0), numberOfSubRanges);

  abyss.initializationPhase();
  abyss.referenceSetUpdate();
  List<List<DoubleSolution>> list = abyss.subsetGeneration();
  List<DoubleSolution> combinedSolutions = abyss.solutionCombination(list) ;
  for (DoubleSolution solution : combinedSolutions) {
    DoubleSolution improvedSolution = abyss.improvement(solution) ;
    abyss.referenceSetUpdate(improvedSolution);
  }

  abyss.restart();
  assertEquals(populationSize, abyss.getPopulation().size());
}
 
開發者ID:jMetal,項目名稱:jMetal,代碼行數:26,代碼來源:ABYSSTest.java

示例5: setup

import org.uma.jmetal.operator.impl.crossover.SBXCrossover; //導入依賴的package包/類
@Before
public void setup() {
  problem = new ZDT4() ;

  double crossoverProbability = 1.0 ;
  double crossoverDistributionIndex = 20.0 ;
  crossover = new SBXCrossover(crossoverProbability, crossoverDistributionIndex) ;

  double mutationProbability = 1.0 / problem.getNumberOfVariables() ;
  double mutationDistributionIndex = 20.0 ;
  mutation = new PolynomialMutation(mutationProbability, mutationDistributionIndex) ;

  archive = new CrowdingDistanceArchive<>(100) ;

  localSearchOperator = new ArchiveMutationLocalSearch<>(1, mutation, archive, problem) ;
}
 
開發者ID:jMetal,項目名稱:jMetal,代碼行數:17,代碼來源:ABYSSIT.java

示例6: setup

import org.uma.jmetal.operator.impl.crossover.SBXCrossover; //導入依賴的package包/類
@Before
public void setup() {
  problem = new ZDT4() ;

  double crossoverProbability = 0.9 ;
  double crossoverDistributionIndex = 20.0 ;
  crossover = new SBXCrossover(crossoverProbability, crossoverDistributionIndex) ;

  double mutationProbability = 1.0 / problem.getNumberOfVariables() ;
  double mutationDistributionIndex = 20.0 ;
  mutation = new PolynomialMutation(mutationProbability, mutationDistributionIndex) ;
}
 
開發者ID:jMetal,項目名稱:jMetal,代碼行數:13,代碼來源:MOCellIT.java

示例7: startup

import org.uma.jmetal.operator.impl.crossover.SBXCrossover; //導入依賴的package包/類
@SuppressWarnings("unchecked")
@Before public void startup() {
  problem = mock(Problem.class);
  when(problem.getNumberOfVariables()).thenReturn(NUMBER_OF_VARIABLES_OF_THE_MOCKED_PROBLEM);

  double crossoverProbability = 0.9 ;
  double crossoverDistributionIndex = 20.0 ;
  crossover = new SBXCrossover(crossoverProbability, crossoverDistributionIndex) ;

  double mutationProbability = 1.0 / problem.getNumberOfVariables() ;
  double mutationDistributionIndex = 20.0 ;
  mutation = new PolynomialMutation(mutationProbability, mutationDistributionIndex) ;

  builder = new NSGAIIBuilder<DoubleSolution>(problem, crossover, mutation);
}
 
開發者ID:jMetal,項目名稱:jMetal,代碼行數:16,代碼來源:NSGAIIBuilderTest.java

示例8: testDefaultConfiguration

import org.uma.jmetal.operator.impl.crossover.SBXCrossover; //導入依賴的package包/類
@Test public void testDefaultConfiguration() {
  assertEquals(100, builder.getPopulationSize());
  assertEquals(25000, builder.getMaxIterations());

  SBXCrossover crossover = (SBXCrossover) builder.getCrossoverOperator();
  assertEquals(0.9, crossover.getCrossoverProbability(), EPSILON);
  assertEquals(20.0, crossover.getDistributionIndex(), EPSILON);

  PolynomialMutation mutation = (PolynomialMutation) builder.getMutationOperator();
  assertEquals(1.0 / NUMBER_OF_VARIABLES_OF_THE_MOCKED_PROBLEM, mutation.getMutationProbability(),
      EPSILON);
  assertEquals(20.0, mutation.getDistributionIndex(), EPSILON);
}
 
開發者ID:jMetal,項目名稱:jMetal,代碼行數:14,代碼來源:NSGAIIBuilderTest.java

示例9: main

import org.uma.jmetal.operator.impl.crossover.SBXCrossover; //導入依賴的package包/類
/**
 * Usage: java org.uma.jmetal.runner.singleobjective.SteadyStateGeneticAlgorithmRunner
 */
public static void main(String[] args) throws Exception {
  Algorithm<DoubleSolution> algorithm;
  DoubleProblem problem = new Sphere(20) ;

  CrossoverOperator<DoubleSolution> crossoverOperator =
      new SBXCrossover(0.9, 20.0) ;
  MutationOperator<DoubleSolution> mutationOperator =
      new PolynomialMutation(1.0 / problem.getNumberOfVariables(), 20.0) ;
  SelectionOperator<List<DoubleSolution>, DoubleSolution> selectionOperator = new BinaryTournamentSelection<DoubleSolution>() ;

  algorithm = new GeneticAlgorithmBuilder<DoubleSolution>(problem, crossoverOperator, mutationOperator)
      .setPopulationSize(100)
      .setMaxEvaluations(25000)
      .setSelectionOperator(selectionOperator)
      .setVariant(GeneticAlgorithmBuilder.GeneticAlgorithmVariant.STEADY_STATE)
      .build() ;

  AlgorithmRunner algorithmRunner = new AlgorithmRunner.Executor(algorithm)
      .execute() ;

  long computingTime = algorithmRunner.getComputingTime() ;

  DoubleSolution solution = algorithm.getResult() ;
  List<DoubleSolution> population = new ArrayList<>(1) ;
  population.add(solution) ;

  new SolutionListOutput(population)
      .setSeparator("\t")
      .setVarFileOutputContext(new DefaultFileOutputContext("VAR.tsv"))
      .setFunFileOutputContext(new DefaultFileOutputContext("FUN.tsv"))
      .print();

  JMetalLogger.logger.info("Total execution time: " + computingTime + "ms");
  JMetalLogger.logger.info("Objectives values have been written to file FUN.tsv");
  JMetalLogger.logger.info("Variables values have been written to file VAR.tsv");

  JMetalLogger.logger.info("Fitness: " + solution.getObjective(0)) ;
}
 
開發者ID:jMetal,項目名稱:jMetal,代碼行數:42,代碼來源:SteadyStateGeneticAlgorithmRunner.java

示例10: main

import org.uma.jmetal.operator.impl.crossover.SBXCrossover; //導入依賴的package包/類
/**
 * Usage: java org.uma.jmetal.runner.singleobjective.GenerationalGeneticAlgorithmDoubleEncodingRunner
 */
public static void main(String[] args) throws Exception {
  Algorithm<DoubleSolution> algorithm;
  DoubleProblem problem = new Sphere(20) ;

  CrossoverOperator<DoubleSolution> crossover =
          new SBXCrossover(0.9, 20.0) ;
  MutationOperator<DoubleSolution> mutation =
          new PolynomialMutation(1.0 / problem.getNumberOfVariables(), 20.0) ;
  SelectionOperator<List<DoubleSolution>, DoubleSolution> selection = new BinaryTournamentSelection<DoubleSolution>() ;

  algorithm = new GeneticAlgorithmBuilder<>(problem, crossover, mutation)
          .setPopulationSize(100)
          .setMaxEvaluations(25000)
          .setSelectionOperator(selection)
          .build() ;

  AlgorithmRunner algorithmRunner = new AlgorithmRunner.Executor(algorithm)
          .execute() ;

  DoubleSolution solution = algorithm.getResult() ;
  List<DoubleSolution> population = new ArrayList<>(1) ;
  population.add(solution) ;

  long computingTime = algorithmRunner.getComputingTime() ;

  new SolutionListOutput(population)
          .setSeparator("\t")
          .setVarFileOutputContext(new DefaultFileOutputContext("VAR.tsv"))
          .setFunFileOutputContext(new DefaultFileOutputContext("FUN.tsv"))
          .print();

  JMetalLogger.logger.info("Total execution time: " + computingTime + "ms");
  JMetalLogger.logger.info("Objectives values have been written to file FUN.tsv");
  JMetalLogger.logger.info("Variables values have been written to file VAR.tsv");

  JMetalLogger.logger.info("Fitness: " + solution.getObjective(0)) ;
}
 
開發者ID:jMetal,項目名稱:jMetal,代碼行數:41,代碼來源:GenerationalGeneticAlgorithmDoubleEncodingRunner.java

示例11: getAlgorithm

import org.uma.jmetal.operator.impl.crossover.SBXCrossover; //導入依賴的package包/類
public static DynamicAlgorithm<List<DoubleSolution>, AlgorithmObservedData<DoubleSolution>>
getAlgorithm(String algorithmName, DynamicProblem<DoubleSolution, SingleObservedData<Integer>> problem) {
  DynamicAlgorithm<List<DoubleSolution>, AlgorithmObservedData<DoubleSolution>> algorithm;

  CrossoverOperator<DoubleSolution> crossover = new SBXCrossover(0.9, 20.0);
  MutationOperator<DoubleSolution> mutation =
          new PolynomialMutation(1.0 / problem.getNumberOfVariables(), 20.0);
  SelectionOperator<List<DoubleSolution>, DoubleSolution> selection=new BinaryTournamentSelection<DoubleSolution>();;

  switch (algorithmName) {
    case "NSGAII":
      algorithm = new DynamicNSGAIIBuilder<>(crossover, mutation, new DefaultObservable<>())
              .setMaxEvaluations(50000)
              .setPopulationSize(100)
              .build(problem);
      break;

    case "MOCell":
      algorithm = new DynamicMOCellBuilder<>(crossover, mutation, new DefaultObservable<>())
              .setMaxEvaluations(50000)
              .setPopulationSize(100)
              .build(problem);
      break;
    case "SMPSO":
      algorithm = new DynamicSMPSOBuilder<>(
              mutation, new CrowdingDistanceArchive<>(100), new DefaultObservable<>())
              .setMaxIterations(500)
              .setSwarmSize(100)
              .build(problem);
      break;
    case "WASFGA":
      List<Double> referencePoint = new ArrayList<>();
      referencePoint.add(0.5);
      referencePoint.add(0.5);

      algorithm = new DynamicWASFGABuilder<>(crossover, mutation, referencePoint, new DefaultObservable<>())
              .setMaxIterations(500)
              .setPopulationSize(100)
              .build(problem);
      break;


    case "NSGAIII":
      algorithm = (DynamicAlgorithm<List<DoubleSolution>, AlgorithmObservedData<DoubleSolution>>) new DynamicNSGAIIIBuilder<>(problem,new DefaultObservable<>())
              .setCrossoverOperator(crossover)
              .setMutationOperator(mutation)
              .setSelectionOperator(selection)
              .setMaxIterations(50000)
              .build();

      break;
    default:
      throw new JMetalException("Algorithm " + algorithmName + " does not exist") ;
  }

  return algorithm ;
}
 
開發者ID:jMetal,項目名稱:jMetalSP,代碼行數:58,代碼來源:AlgorithmFactory.java

示例12: main

import org.uma.jmetal.operator.impl.crossover.SBXCrossover; //導入依賴的package包/類
public static void main(String[] args) throws IOException, InterruptedException {
  // STEP 1. Create the problem
  DynamicProblem<DoubleSolution, SingleObservedData<Integer>> problem =
          new FDA2();

  // STEP 2. Create and configure the algorithm
  List<Double> referencePoint = new ArrayList<>();
  referencePoint.add(0.0);
  referencePoint.add(0.0);

  CrossoverOperator<DoubleSolution> crossover = new SBXCrossover(0.9, 20.0);
  MutationOperator<DoubleSolution> mutation =
          new PolynomialMutation(1.0 / problem.getNumberOfVariables(), 20.0);

  InDM2<DoubleSolution> algorithm = new InDM2Builder<>(crossover, mutation, referencePoint, new DefaultObservable<>())
          .setMaxIterations(25000)
          .setPopulationSize(50)
          .build(problem);

  algorithm.setRestartStrategy(new RestartStrategy<>(
          //new RemoveFirstNSolutions<>(50),
          //new RemoveNSolutionsAccordingToTheHypervolumeContribution<>(50),
          //new RemoveNSolutionsAccordingToTheCrowdingDistance<>(50),
          new RemoveNRandomSolutions(50),
          new CreateNRandomSolutions<DoubleSolution>()));

  algorithm.setRestartStrategyForReferencePointChange(new RestartStrategy<>(
          new RemoveNRandomSolutions<>(50),
          new CreateNRandomSolutions<DoubleSolution>()));

  // STEP 3. Create a streaming data source for the problem and register
  StreamingDataSource<SingleObservedData<Integer>> streamingDataSource =
          new SimpleStreamingCounterDataSource(2000) ;

  streamingDataSource.getObservable().register(problem);

  // STEP 4. Create a streaming data source for the algorithm and register
  StreamingDataSource<SingleObservedData<List<Double>>> keyboardstreamingDataSource =
          new SimpleStreamingDataSourceFromKeyboard() ;

  keyboardstreamingDataSource.getObservable().register(algorithm);

  // STEP 5. Create the data consumers and register into the algorithm
  DataConsumer<AlgorithmObservedData<DoubleSolution>> localDirectoryOutputConsumer =
          new LocalDirectoryOutputConsumer<DoubleSolution>("outputdirectory", algorithm) ;
  DataConsumer<AlgorithmObservedData<DoubleSolution>> chartConsumer =
          new ChartInDM2Consumer<DoubleSolution>(algorithm, referencePoint) ;

  algorithm.getObservable().register(localDirectoryOutputConsumer);
  algorithm.getObservable().register(chartConsumer) ;

  // STEP 6. Create the application and run
  JMetalSPApplication<
          DoubleSolution,
          DynamicProblem<DoubleSolution, SingleObservedData<Integer>>,
          DynamicAlgorithm<List<DoubleSolution>, AlgorithmObservedData<DoubleSolution>>> application;

  application = new JMetalSPApplication<>();

  application.setStreamingRuntime(new DefaultRuntime())
          .setProblem(problem)
          .setAlgorithm(algorithm)
          .addStreamingDataSource(streamingDataSource)
          .addStreamingDataSource(keyboardstreamingDataSource)
          .addAlgorithmDataConsumer(localDirectoryOutputConsumer)
          .addAlgorithmDataConsumer(chartConsumer)
          .run();
}
 
開發者ID:jMetal,項目名稱:jMetalSP,代碼行數:69,代碼來源:InDM2RunnerForContinuousProblems.java

示例13: main

import org.uma.jmetal.operator.impl.crossover.SBXCrossover; //導入依賴的package包/類
/**
 * Program to generate data representing the distribution of points generated by a SBX
 * crossover operator. The parameters to be introduced by the command line are:
 * - numberOfSolutions: number of solutions to generate
 * - granularity: number of subdivisions to be considered.
 * - distributionIndex: distribution index of the polynomial mutation operator
 * - outputFile: file containing the results
 *
 * @param args Command line arguments
 */
public static void main(String[] args) throws FileNotFoundException {
  if (args.length !=4) {
    throw new JMetalException("Usage: numberOfSolutions granularity distributionIndex outputFile") ;
  }
  int numberOfPoints = Integer.valueOf(args[0]) ;
  int granularity = Integer.valueOf(args[1]) ;
  double distributionIndex = Double.valueOf(args[2]) ;
  String outputFileName = args[3] ;
  DoubleProblem problem ;

  problem = new Kursawe(1) ;
  CrossoverOperator<DoubleSolution> crossover = new SBXCrossover(1.0, distributionIndex) ;

  DoubleSolution solution1 = problem.createSolution() ;
  DoubleSolution solution2 = problem.createSolution() ;
  solution1.setVariableValue(0, -3.0);
  solution2.setVariableValue(0, 3.0);
  List<DoubleSolution> parents = Arrays.asList(solution1, solution2) ;

  List<DoubleSolution> population = new ArrayList<>(numberOfPoints) ;
  for (int i = 0; i < numberOfPoints ; i++) {
    List<DoubleSolution> solutions = (List<DoubleSolution>) crossover.execute(parents);
    population.add(solutions.get(0)) ;
    population.add(solutions.get(1)) ;
  }

  Collections.sort(population, new VariableComparator()) ;

  new SolutionListOutput(population)
      .setSeparator("\t")
      .setVarFileOutputContext(new DefaultFileOutputContext("solutionsSBX"))
      .print();

  double[][] classifier = classify(population, problem, granularity);

  BufferedWriter bufferedWriter = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(outputFileName)));

  try {
    for (int i = 0; i < classifier.length; i++) {
      bufferedWriter
          .write(classifier[i][0] + "\t" + classifier[i][1]);
      bufferedWriter.newLine();
    }
    bufferedWriter.close();
  } catch (IOException e) {
    throw new JMetalException("Error reading data ", e) ;
  }
}
 
開發者ID:jMetal,項目名稱:jMetal,代碼行數:59,代碼來源:SBXCrossoverWorkingTest.java

示例14: run

import org.uma.jmetal.operator.impl.crossover.SBXCrossover; //導入依賴的package包/類
public Map<String,Double> run( Program program, Map<String,Evidence> objectives, Map<String,Double> fixedVariables ) {
		
		CrossoverOperator<DoubleSolution>		crossover					= new SBXCrossover( 0.1, 0.1 ); // BLXAlphaCrossover( 0.5 );
		MutationOperator<DoubleSolution>		mutation					= new NonUniformMutation( 0.2,  0.3, 10 ); // SimpleRandomMutation( 0.5 );
		SelectionOperator<List<DoubleSolution>, DoubleSolution> selection	= new BinaryTournamentSelection<DoubleSolution>();
		SolutionListEvaluator<DoubleSolution>	evaluator					= new SequentialSolutionListEvaluator<DoubleSolution>();
		
		
		InputOptimizationProblem  				problem = new InputOptimizationProblem( program );
		
		problem.setFixedVariables( fixedVariables );
		problem.setObjectives( objectives );
		
		NSGAII<DoubleSolution>					algorithm = new NSGAII<DoubleSolution>( problem, 10, 10, crossover, mutation, selection, evaluator );
		
		
		algorithm.run();
		
		List<DoubleSolution> result = algorithm.getResult();
		
		Map<String,Double> output = new HashMap<String,Double>();
		
		if( result.size() > 0 ) {
			
			System.out.println( problem.getVariableList().size() );
			
			for( String id : problem.getVariableList() ) {
				
				if( program.getScenario().getConstraint( id, "st" ) != null ) {
					output.put( id, 
							Double.parseDouble(
									program.getScenario().getConstraint( id, "st" ) ) );
				}
//				else {
//					output.put( id, Double.NaN );
//				}
			}
			
			
		}
		
		return output;
		
	}
 
開發者ID:RISCOSS,項目名稱:riscoss-corporate,代碼行數:45,代碼來源:GA.java


注:本文中的org.uma.jmetal.operator.impl.crossover.SBXCrossover類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。