本文整理匯總了Java中org.seqcode.ml.clustering.vectorcluster.VectorClusterElement類的典型用法代碼示例。如果您正苦於以下問題:Java VectorClusterElement類的具體用法?Java VectorClusterElement怎麽用?Java VectorClusterElement使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
VectorClusterElement類屬於org.seqcode.ml.clustering.vectorcluster包,在下文中一共展示了VectorClusterElement類的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: generateBootStrapSample
import org.seqcode.ml.clustering.vectorcluster.VectorClusterElement; //導入依賴的package包/類
private ArrayList<VectorClusterElement> generateBootStrapSample(){
ArrayList<VectorClusterElement> ret = new ArrayList<VectorClusterElement>();
Random rand = new Random();
int maxInd = sparse_profiles.size();
int[] added = new int[dataSplitUnits];
int currRand = rand.nextInt(maxInd);
while(addBsDataPoint(currRand,added).car()){
added[addBsDataPoint(currRand,added).cdr()]++;
ret.add(sparse_profiles.get(currRand));
currRand = rand.nextInt(maxInd);
}
//for(int i=0; i<added.length;i++){
// System.out.println(added[i]);
//}
return ret;
}
示例2: getClusterAssignment
import org.seqcode.ml.clustering.vectorcluster.VectorClusterElement; //導入依賴的package包/類
private int getClusterAssignment(VectorClusterElement pfl, Vector<VectorClusterElement> clusMeans){
int minCluster = -1;
double minDist = 0.0;
for(int i = 0; i < clusMeans.size(); i++) {
double clustDist = metric.evaluate(pfl, clusMeans.get(i));
if(minCluster == -1 || clustDist < minDist) {
minDist = clustDist;
minCluster = i;
}
}
return minCluster;
}
示例3: clusterList
import org.seqcode.ml.clustering.vectorcluster.VectorClusterElement; //導入依賴的package包/類
private List<Integer> clusterList(Vector<VectorClusterElement> clusMeans) throws IOException{
List<Integer> clusterAssignment = new ArrayList<Integer>();
for(int p=0; p<profiles.size(); p++){
int memebership = getClusterAssignment(profiles.get(p),clusMeans);
clusterAssignment.add(memebership);
}
return clusterAssignment;
}
示例4: doClustering
import org.seqcode.ml.clustering.vectorcluster.VectorClusterElement; //導入依賴的package包/類
/**
*
* @param nC
* @param data
* @return Pair<Pair<silhouette,ssd>,clustermeans>>
*/
private Pair<Pair<Double,Double>,Vector<VectorClusterElement>> doClustering(int nC, ArrayList<VectorClusterElement> data){
// Initialize
ClusterRepresentative<VectorClusterElement> crep = new Mean();
//Random starts
Random generator = new Random();
Vector<VectorClusterElement> starts = new Vector<VectorClusterElement>();
for(int s=0; s<nC; s++){
boolean found = false;
while(!found){
int r = generator.nextInt(data.size());
if(!added(starts,data.get(r))){
starts.add(data.get(r));
found = true;
}
}
}
//Initialize clustering
KMeansClustering<VectorClusterElement> kmc = new KMeansClustering<VectorClusterElement>(metric, crep, starts);
kmc.setIterations(numClusItrs);
kmc.clusterElements(data,0.01);
Pair<Double,Double> clusterquality = new Pair<Double,Double>(kmc.silhouette(),kmc.sumOfSquaredDistance());
return new Pair<Pair<Double,Double>,Vector<VectorClusterElement>>(clusterquality,kmc.getClusterMeans());
}
示例5: cluster
import org.seqcode.ml.clustering.vectorcluster.VectorClusterElement; //導入依賴的package包/類
/**
* The method should be executed after initiating the class object
* @throws IOException
*/
public List<Integer> cluster() throws IOException {
// Initialize
Vector<VectorClusterElement> bestClusterMeans=null;
Double SSD = Double.MAX_VALUE;
ClusterRepresentative<VectorClusterElement> crep = new Mean();
double thresholdDistances[][] = shapeAlign.thresholdDistance();
for (int i= 0 ; i<10; i++){
for (int j=0; j<10 ; j++){
System.out.print(thresholdDistances[i][j]);
}
System.out.println();
}
// converting double[] to vector
for (int i = 0; i <thresholdDistances.length; i++){
DefaultVectorClusterElement v = new DefaultVectorClusterElement(thresholdDistances[i]);
profiles.add(v);
}
for(int i=0; i<=TRAIN_REPEATS; i++){
//Random starts
Random generator = new Random();
ArrayList<Integer> pNum = new ArrayList<Integer>();
Vector<VectorClusterElement> starts = new Vector<VectorClusterElement>();
int s=0;
do{
int r = generator.nextInt(profiles.size());
if (!pNum.contains(r)){ // make sure that random number picked is not previously included
starts.add(profiles.get(r));
pNum.add(r);
s++;
}
}while (s<K);
System.out.println("iteration round "+i);
//Initialize clustering
KMeansClustering<VectorClusterElement> kmc = new KMeansClustering<VectorClusterElement>(metric, crep, starts);
kmc.setIterations(MAX_ITER);
// Cluster !
kmc.clusterElements(profiles,0.01);
Double currSSD = kmc.sumOfSquaredDistance();
if(currSSD<SSD){
SSD = currSSD;
bestClusterMeans = kmc.getClusterMeans();
}System.out.println("SSD: "+currSSD);
}
return clusterList(bestClusterMeans);
}
示例6: execute
import org.seqcode.ml.clustering.vectorcluster.VectorClusterElement; //導入依賴的package包/類
/**
* The method that should be executed after initiating the class object
* @throws IOException
*/
public List<Integer> execute() throws IOException{
StringBuilder sb = new StringBuilder();
double[][] sh = new double[maxC-minC+1][numBootstraps];
double[][] ssd = new double[maxC-minC+1][numBootstraps];
HashMap<Integer,Vector<VectorClusterElement>> bestClusterMeans = new HashMap<Integer,Vector<VectorClusterElement>>();
for(int c = minC; c<=maxC; c++){
double bestSh = Double.MIN_VALUE;
Vector<VectorClusterElement> bestMeans = null;
for(int b=0; b<numBootstraps; b++){
ArrayList<VectorClusterElement> currBS = generateBootStrapSample();
Pair<Pair<Double,Double>,Vector<VectorClusterElement>> currOut = doClustering(c, currBS);
double currSH = currOut.car().car();
double currSSD = currOut.car().cdr();
sh[c-minC][b] = currSH;
ssd[c-minC][b] = currSSD;
sb.append(c);sb.append("\t");sb.append(currSH);sb.append("\t");sb.append("Silhouette");sb.append("\n");
sb.append(c);sb.append("\t");sb.append(currSSD);sb.append("\t");sb.append("SSD");sb.append("\n");
if(bestSh < currSH){
bestSh = currSH;
bestMeans = currOut.cdr();
}
}
bestClusterMeans.put(c, bestMeans);
}
BufferedWriter bwQual = new BufferedWriter(new FileWriter(outdir.getAbsolutePath()+File.separator+"ClusterQuality.tab"));
bwQual.write(sb.toString());
bwQual.close();
double[] mediansSh = new double[maxC-minC+1];
for(int c=0; c<sh.length; c++){
Arrays.sort(sh[c]);
int middle = ((numBootstraps) / 2);
if(numBootstraps % 2 == 0){
double medianA = sh[c][middle];
double medianB = sh[c][middle-1];
mediansSh[c] = (medianA + medianB) / 2;
} else{
mediansSh[c] = sh[c][middle];
}
}
double maxMedian = Double.MIN_VALUE;
int bestC = 0;
for(int c=0; c<mediansSh.length; c++){
if(mediansSh[c]>maxMedian){
maxMedian = mediansSh[c];
bestC = c+minC;
}
}
K= bestC;
// Caution: the value of K might change in the "writClusters" method also
List<Integer> clusAssignment = writeClusters(bestClusterMeans.get(bestC));
return clusAssignment;
}