本文整理匯總了Java中org.openimaj.image.processing.convolution.FImageGradients類的典型用法代碼示例。如果您正苦於以下問題:Java FImageGradients類的具體用法?Java FImageGradients怎麽用?Java FImageGradients使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
FImageGradients類屬於org.openimaj.image.processing.convolution包,在下文中一共展示了FImageGradients類的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: setup
import org.openimaj.image.processing.convolution.FImageGradients; //導入依賴的package包/類
/**
* Setup tests
*
* @throws IOException
*/
@Before
public void setup() throws IOException {
image = ImageUtilities.readF(OpenIMAJ.getLogoAsStream());
final Mode mode = FImageGradients.Mode.Unsigned;
final FImage[] interpMags = new FImage[9];
final FImage[] mags = new FImage[9];
for (int i = 0; i < 9; i++) {
interpMags[i] = new FImage(image.width, image.height);
mags[i] = new FImage(image.width, image.height);
}
FImageGradients.gradientMagnitudesAndQuantisedOrientations(image, interpMags, true, mode);
FImageGradients.gradientMagnitudesAndQuantisedOrientations(image, mags, false, mode);
satInterp = new SATWindowedExtractor(interpMags);
sat = new SATWindowedExtractor(mags);
gradMags = FImageGradients.getGradientMagnitudesAndOrientations(image, mode);
binnedInterp = new InterpolatedBinnedWindowedExtractor(9, mode.minAngle(), mode.maxAngle(), true);
binned = new BinnedWindowedExtractor(9, mode.minAngle(), mode.maxAngle());
gradMags.orientations.analyseWith(binnedInterp);
gradMags.orientations.analyseWith(binned);
}
示例2: analyseImage
import org.openimaj.image.processing.convolution.FImageGradients; //導入依賴的package包/類
@Override
public void analyseImage(FImage image, Rectangle bounds) {
if (data == null)
data = new WorkingData();
data.boundMinX = (int) bounds.x;
data.boundMaxX = (int) (bounds.width - 1);
data.boundMinY = (int) bounds.y;
data.boundMaxY = (int) (bounds.height - 1);
data.setupWorkingSpace(image, this);
FImageGradients.gradientMagnitudesAndQuantisedOrientations(image, data.gradientMagnitudes);
extractFeatures();
normaliseDescriptors();
}
示例3: beforeUpdate
import org.openimaj.image.processing.convolution.FImageGradients; //導入依賴的package包/類
@Override
public void beforeUpdate(MBFImage frame) {
final FImage f = frame.flatten();
f.analyseWith(sobel);
sobel.dx.normalise();
dyImage = sobel.dy.normalise();
FImageGradients.gradientMagnitudesAndOrientations(f, magImage, oriImage);
magImage.normalise();
oriImage.normalise();
frame.internalAssign(sobel.dx.toRGB());
dyImageIC.setImage(dyImageB = ImageUtilities.createBufferedImage(dyImage));
magImageIC.setImage(magImageB = ImageUtilities.createBufferedImage(magImage));
oriImageIC.setImage(oriImageB = ImageUtilities.createBufferedImage(oriImage));
}
示例4: analyseImage
import org.openimaj.image.processing.convolution.FImageGradients; //導入依賴的package包/類
@Override
public void analyseImage(FImage image) {
final FImage[] magnitudes = new FImage[nbins];
for (int i = 0; i < nbins; i++)
magnitudes[i] = new FImage(image.width, image.height);
FImageGradients.gradientMagnitudesAndQuantisedOrientations(image, magnitudes, histogramInterpolation,
orientationMode);
computeSATs(magnitudes);
}
示例5: analyseImage
import org.openimaj.image.processing.convolution.FImageGradients; //導入依賴的package包/類
@Override
public void analyseImage(FImage image) {
lastBounds = image.getBounds();
final FImageGradients gradMag = FImageGradients.getGradientMagnitudesAndOrientations(image, orientationMode);
this.magnitudes = gradMag.magnitudes;
histExtractor.analyseImage(gradMag.orientations);
if (edgeDetector != null) {
magnitudes.multiplyInplace(image.process(edgeDetector));
}
}
示例6: getCurrentGradientProps
import org.openimaj.image.processing.convolution.FImageGradients; //導入依賴的package包/類
/**
* Get the GradientScaleSpaceImageExtractorProperties for the given
* properties. The returned properties are the same as the input properties,
* but with the gradient images added.
*
* For efficiency, this method always returns the same cached
* GradientScaleSpaceImageExtractorProperties, and internally updates this
* as necessary. The gradient images are only recalculated when the input
* image from the input properties is different to the cached one.
*
* @param properties
* input properties
* @return cached GradientScaleSpaceImageExtractorProperties
*/
public GradientScaleSpaceImageExtractorProperties<FImage> getCurrentGradientProps(
ScaleSpaceImageExtractorProperties<FImage> properties)
{
if (properties.image != currentGradientProperties.image) {
currentGradientProperties.image = properties.image;
// only if the size of the image has changed do we need to reset the
// gradient and orientation images.
if (currentGradientProperties.orientation == null ||
currentGradientProperties.orientation.height != currentGradientProperties.image.height ||
currentGradientProperties.orientation.width != currentGradientProperties.image.width)
{
currentGradientProperties.orientation = new FImage(currentGradientProperties.image.width,
currentGradientProperties.image.height);
currentGradientProperties.magnitude = new FImage(currentGradientProperties.image.width,
currentGradientProperties.image.height);
}
FImageGradients.gradientMagnitudesAndOrientations(currentGradientProperties.image,
currentGradientProperties.magnitude, currentGradientProperties.orientation);
}
currentGradientProperties.x = properties.x;
currentGradientProperties.y = properties.y;
currentGradientProperties.scale = properties.scale;
return currentGradientProperties;
}
示例7: extract
import org.openimaj.image.processing.convolution.FImageGradients; //導入依賴的package包/類
public OrientedFeatureVector[] extract(FImage image, Ellipse ellipse) {
final Matrix tf = ellipse.transformMatrix();
final FImage patch = new FImage(patchSize, patchSize);
final float halfSize = patchSize / 2;
// Sample the ellipse content into a rectified image
for (int y = 0; y < patchSize; y++) {
for (int x = 0; x < patchSize; x++) {
final Point2dImpl pt = new Point2dImpl((x - halfSize) / halfSize, (y - halfSize) / halfSize);
final Point2dImpl tpt = pt.transform(tf);
patch.pixels[y][x] = image.getPixelInterpNative(tpt.x, tpt.y, 0);
}
}
// now find grad mags and oris
final FImageGradients gmo = FImageGradients.getGradientMagnitudesAndOrientations(patch);
final GradientScaleSpaceImageExtractorProperties<FImage> props = new GradientScaleSpaceImageExtractorProperties<FImage>();
props.image = patch;
props.magnitude = gmo.magnitudes;
props.orientation = gmo.orientations;
props.x = patch.width / 2;
props.y = patch.height / 2;
props.scale = patch.height / 2 / 3; // ???
final DominantOrientationExtractor doe = new DominantOrientationExtractor();
final float[] oris = doe.extractFeatureRaw(props);
final MBFImage p2 = patch.toRGB();
for (final float o : oris) {
p2.drawLine(p2.getWidth() / 2, p2.getHeight() / 2, o, 20, RGBColour.RED);
}
DisplayUtilities.display(p2);
final OrientedFeatureVector[] vectors = new OrientedFeatureVector[oris.length];
for (int i = 0; i < oris.length; i++) {
final float ori = oris[i];
final GradientFeatureProvider provider = factory.newProvider();
// and construct the feature and sampling every pixel in the patch
// note: the descriptor is actually computed over a sub-patch; there
// is
// a border that is used for oversampling and avoiding edge effects.
final float overSample = provider.getOversamplingAmount();
for (int y = 0; y < patchSize; y++) {
final float yy = (y * (2 * overSample + 1) / patchSize) - overSample;
for (int x = 0; x < patchSize; x++) {
final float xx = (x * (2 * overSample + 1) / patchSize) - overSample;
final float gradmag = gmo.magnitudes.pixels[y][x];
final float gradori = gmo.orientations.pixels[y][x];
provider.addSample(xx, yy, gradmag, gradori - ori);
}
}
vectors[i] = provider.getFeatureVector();
}
return vectors;
}
示例8: PHOG
import org.openimaj.image.processing.convolution.FImageGradients; //導入依賴的package包/類
/**
* Construct with the given parameters. The <code>edgeDetector</code>
* parameter can be <code>null</code> if you don't want to filter out
* non-edge pixels from the histograms.
*
* @param nlevels
* number of pyramid levels (note this includes l0, so you might
* need 1 more)
* @param nbins
* number of bins
* @param histogramInterpolation
* should the gradient orientations be interpolated?
* @param orientationMode
* the orientation mode
* @param edgeDetector
* the edge detector to use (may be <code>null</code> for
* gradient features)
*/
public PHOG(int nlevels, int nbins, boolean histogramInterpolation, FImageGradients.Mode orientationMode,
ImageProcessor<FImage> edgeDetector)
{
this.nlevels = nlevels;
this.edgeDetector = edgeDetector;
this.orientationMode = orientationMode;
if (histogramInterpolation)
histExtractor = new InterpolatedBinnedWindowedExtractor(nbins, true);
else
histExtractor = new BinnedWindowedExtractor(nbins);
histExtractor.setMax(orientationMode.maxAngle());
histExtractor.setMin(orientationMode.minAngle());
}
示例9: getCurrentGradientProps
import org.openimaj.image.processing.convolution.FImageGradients; //導入依賴的package包/類
/**
* Get the GradientScaleSpaceImageExtractorProperties for the given
* properties. The returned properties are the same as the input properties,
* but with the gradient images added.
*
* For efficiency, this method always returns the same cached
* GradientScaleSpaceImageExtractorProperties, and internally updates this
* as necessary. The gradient images are only recalculated when the input
* image from the input properties is different to the cached one.
*
* @param properties
* input properties
* @return cached GradientScaleSpaceImageExtractorProperties
*/
public GradientScaleSpaceImageExtractorProperties<FImage> getCurrentGradientProps(
ScaleSpaceImageExtractorProperties<MBFImage> properties)
{
if (properties.image != image) {
image = properties.image;
currentGradientProperties.image = image.bands.get(0);
// only if the size of the image has changed do we need to reset the
// gradient and orientation images.
if (currentGradientProperties.orientation == null ||
currentGradientProperties.orientation.height != currentGradientProperties.image.height ||
currentGradientProperties.orientation.width != currentGradientProperties.image.width)
{
currentGradientProperties.orientation = new FImage(currentGradientProperties.image.width,
currentGradientProperties.image.height);
currentGradientProperties.magnitude = new FImage(currentGradientProperties.image.width,
currentGradientProperties.image.height);
if (magnitudes == null) {
magnitudes = new FImage[image.bands.size() - 1];
orientations = new FImage[image.bands.size() - 1];
}
for (int i = 0; i < magnitudes.length; i++) {
magnitudes[i] = new FImage(currentGradientProperties.image.width,
currentGradientProperties.image.height);
orientations[i] = new FImage(currentGradientProperties.image.width,
currentGradientProperties.image.height);
}
}
FImageGradients.gradientMagnitudesAndOrientations(currentGradientProperties.image,
currentGradientProperties.magnitude, currentGradientProperties.orientation);
for (int i = 0; i < magnitudes.length; i++) {
FImageGradients.gradientMagnitudesAndOrientations(image.getBand(i + 1), magnitudes[i], orientations[i]);
}
}
currentGradientProperties.x = properties.x;
currentGradientProperties.y = properties.y;
currentGradientProperties.scale = properties.scale;
return currentGradientProperties;
}
示例10: GradientOrientationHistogramExtractor
import org.openimaj.image.processing.convolution.FImageGradients; //導入依賴的package包/類
/**
* Construct a new {@link GradientOrientationHistogramExtractor} with the
* given number of bins. Optionally perform linear interpolation across
* orientation bins. Histograms can also use either signed or unsigned
* gradients.
*
* @param nbins
* number of bins
* @param histogramInterpolation
* if true cyclic linear interpolation is used to share the
* magnitude across the two closest bins; if false only the
* closest bin will be filled.
* @param orientationMode
* the range of orientations to extract
*/
public GradientOrientationHistogramExtractor(int nbins, boolean histogramInterpolation,
FImageGradients.Mode orientationMode)
{
super(nbins);
this.histogramInterpolation = histogramInterpolation;
this.orientationMode = orientationMode;
}
示例11: HOG
import org.openimaj.image.processing.convolution.FImageGradients; //導入依賴的package包/類
/**
* Construct a new {@link HOG} with the given number of bins. Optionally
* perform linear interpolation across orientation bins. Histograms can also
* use either signed or unsigned gradients.
*
* @param nbins
* number of bins
* @param histogramInterpolation
* if true cyclic linear interpolation is used to share the
* magnitude across the two closest bins; if false only the
* closest bin will be filled.
* @param orientationMode
* the range of orientations to extract
* @param strategy
* the {@link SpatialBinningStrategy} to use to produce the
* features
*/
public HOG(int nbins, boolean histogramInterpolation, FImageGradients.Mode orientationMode,
SpatialBinningStrategy strategy)
{
this.extractor = new GradientOrientationHistogramExtractor(nbins, histogramInterpolation, orientationMode);
this.strategy = strategy;
}