本文整理匯總了Java中org.openimaj.data.dataset.VFSGroupDataset類的典型用法代碼示例。如果您正苦於以下問題:Java VFSGroupDataset類的具體用法?Java VFSGroupDataset怎麽用?Java VFSGroupDataset使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
VFSGroupDataset類屬於org.openimaj.data.dataset包,在下文中一共展示了VFSGroupDataset類的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: getComponent
import org.openimaj.data.dataset.VFSGroupDataset; //導入依賴的package包/類
@Override
public Component getComponent(int width, int height) throws IOException {
final VFSGroupDataset<FImage> dataset = FaceDatasetProvider.getDataset();
final FImage img = dataset.getRandomInstance().fill(0f);
for (final FImage i : dataset) {
img.addInplace(i);
}
img.divideInplace(dataset.numInstances()).processInplace(new ResizeProcessor(6.0f));
final JPanel outer = new JPanel();
outer.setOpaque(false);
outer.setPreferredSize(new Dimension(width, height));
outer.setLayout(new GridBagLayout());
final ImageComponent ic = new ImageComponent(true, false);
ic.setAllowPanning(false);
ic.setAllowZoom(false);
ic.setShowPixelColours(false);
ic.setShowXYPosition(false);
ic.setImage(ImageUtilities.createBufferedImageForDisplay(img));
outer.add(ic);
return outer;
}
示例2: main
import org.openimaj.data.dataset.VFSGroupDataset; //導入依賴的package包/類
/**
*
* @param args
* @throws IOException
*/
public static void main( final String[] args ) throws IOException
{
// Virtual file system for music speech corpus
final GroupedDataset<String, ? extends ListDataset<List<SampleBuffer>>, List<SampleBuffer>>
musicSpeechCorpus = new VFSGroupDataset<List<SampleBuffer>>(
"/data/music-speech-corpus/music-speech/wavfile/train",
new OneSecondClipReader() );
System.out.println( "Corpus size: "+musicSpeechCorpus.numInstances() );
// Cross-validate the audio classifier trained on speech & music.
final HashMap<String,String[]> regroup = new HashMap<String, String[]>();
regroup.put( "speech", new String[]{ "speech" } );
regroup.put( "non-speech", new String[]{ "music", "m+s", "other" } );
AudioClassifierTest.crossValidate( DatasetAdaptors.getRegroupedDataset(
musicSpeechCorpus, regroup ) );
// // Create a new feature extractor for the sample buffer
// final SamplesFeatureProvider extractor = new SamplesFeatureProvider();
//
// // Create an SVM annotator
// final SVMAnnotator<SampleBuffer,String> svm = new SVMAnnotator<SampleBuffer,String>( extractor );
//
// AudioClassifier<String> ac = new AudioClassifier<String>( svm );
//
// // Create the training data
// final List<IndependentPair<AudioStream,String>> trainingData = new ArrayList<IndependentPair<AudioStream,String>>();
// trainingData.add( new IndependentPair<AudioStream,String>( AudioDatasetHelper.getAudioStream(
// musicSpeechCorpus.getInstances( "music" ) ), "non-speech" ) );
// trainingData.add( new IndependentPair<AudioStream,String>( AudioDatasetHelper.getAudioStream(
// musicSpeechCorpus.getInstances( "speech" ) ), "speech" ) );
//
// // Train the classifier
// ac.train( trainingData );
}
示例3: getComponent
import org.openimaj.data.dataset.VFSGroupDataset; //導入依賴的package包/類
@Override
public Component getComponent(int width, int height) throws IOException {
final VFSGroupDataset<FImage> dataset = FaceDatasetProvider.getDataset();
final EigenImages eigen = EigenFaceApproximationDemo.loadEigen(dataset, "eigenbasis.bin");
final JPanel outer = new JPanel();
outer.setOpaque(false);
outer.setPreferredSize(new Dimension(width, height));
outer.setLayout(new GridBagLayout());
final JPanel base = new JPanel();
base.setOpaque(false);
base.setPreferredSize(new Dimension(width, height - 50));
base.setLayout(new FlowLayout());
for (int i = 0; i < 60; i++) {
final FImage img = eigen.visualisePC(i);
final ImageComponent ic = new ImageComponent(true, false);
ic.setAllowPanning(false);
ic.setAllowZoom(false);
ic.setShowPixelColours(false);
ic.setShowXYPosition(false);
ic.setImage(ImageUtilities.createBufferedImageForDisplay(img));
base.add(ic);
}
outer.add(base);
return outer;
}
示例4: getComponent
import org.openimaj.data.dataset.VFSGroupDataset; //導入依賴的package包/類
@Override
public Component getComponent(int width, int height) throws IOException {
final VFSGroupDataset<FImage> dataset = FaceDatasetProvider.getDataset();
final FImage mean = dataset.getRandomInstance().fill(0f);
for (final FImage i : dataset) {
mean.addInplace(i);
}
mean.divideInplace(dataset.numInstances());
final JPanel outer = new JPanel();
outer.setOpaque(false);
outer.setPreferredSize(new Dimension(width, height));
outer.setLayout(new GridBagLayout());
final JPanel base = new JPanel();
base.setOpaque(false);
base.setPreferredSize(new Dimension(width, height - 50));
base.setLayout(new FlowLayout());
for (int i = 0; i < 60; i++) {
final FImage img = dataset.getRandomInstance().subtract(mean).normalise();
final ImageComponent ic = new ImageComponent(true, false);
ic.setAllowPanning(false);
ic.setAllowZoom(false);
ic.setShowPixelColours(false);
ic.setShowXYPosition(false);
ic.setImage(ImageUtilities.createBufferedImageForDisplay(img));
base.add(ic);
}
outer.add(base);
return outer;
}
示例5: getComponent
import org.openimaj.data.dataset.VFSGroupDataset; //導入依賴的package包/類
@Override
public Component getComponent(int width, int height) throws IOException {
final VFSGroupDataset<FImage> dataset = FaceDatasetProvider.getDataset();
final JPanel outer = new JPanel();
outer.setOpaque(false);
outer.setPreferredSize(new Dimension(width, height));
outer.setLayout(new GridBagLayout());
final JPanel base = new JPanel();
base.setOpaque(false);
base.setPreferredSize(new Dimension(width, height - 50));
base.setLayout(new FlowLayout());
for (int i = 0; i < 60; i++) {
final FImage img = dataset.getRandomInstance();
final ImageComponent ic = new ImageComponent(true, false);
ic.setAllowPanning(false);
ic.setAllowZoom(false);
ic.setShowPixelColours(false);
ic.setShowXYPosition(false);
ic.setImage(ImageUtilities.createBufferedImageForDisplay(img));
base.add(ic);
}
outer.add(base);
return outer;
}
示例6: main
import org.openimaj.data.dataset.VFSGroupDataset; //導入依賴的package包/類
/**
* @param args
* @throws FileSystemException
*/
public static void main( final String[] args ) throws FileSystemException
{
// Use some images from a directory on the disk
final VFSGroupDataset<MBFImage> i = new VFSGroupDataset<MBFImage>(
"/data/faces/lfw", ImageUtilities.MBFIMAGE_READER );
// Set up the diversity axis to plot thumbnail images.
final ImageThumbnailPlotter itp = new ImageThumbnailPlotter();
final DiversityAxis<MBFImage> dv = new DiversityAxis<MBFImage>( 1600, 800, itp )
{
/** */
private static final long serialVersionUID = 1L;
@Override
public void bandSizeKnown( final int bandSize )
{
itp.setThumbnailSize( bandSize );
}
};
dv.setDiversityAxisName( "Opinion" );
int maxGroups = 10;
int groupCount = 1;
for( final String group: i.getGroups() )
{
for( final MBFImage img : i.get( group ) )
{
// Pretend we've found x number of duplicates for this image
final int x = (int)(Math.random() * 3)+1;
for( int j = 0; j < x; j++ )
{
// Mock-up an opinion value for each image
final double opinionValue = (Math.random() - 0.5) * 2;
// Add it to the diversity axis
dv.addObject( groupCount, opinionValue, img );
}
groupCount++;
// Let's not show too many groups
maxGroups--;
if( maxGroups == 0 ) break;
}
if( maxGroups == 0 ) break;
}
// Show the vis.
dv.repaint();
dv.showWindow( "Opinion VisualisationImpl" );
}
示例7: main
import org.openimaj.data.dataset.VFSGroupDataset; //導入依賴的package包/類
/**
* Main method
*
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
/**
* Build a dataset from images on disk
*/
final VFSListDataset<FImage> images = new VFSListDataset<FImage>("/images",
ImageUtilities.FIMAGE_READER);
System.out.println(images.size());
DisplayUtilities.display(images.getRandomInstance(), "A random image from the dataset");
DisplayUtilities.display("My images", images);
/**
* Build a dataset from images in a zip file
*/
final VFSListDataset<FImage> faces = new VFSListDataset<FImage>("zip:http://datasets.openimaj.org/att_faces.zip",
ImageUtilities.FIMAGE_READER);
System.out.println(faces.size());
DisplayUtilities.display("ATT faces", faces);
/**
* Build a grouped dataset from images in directories in a zip file
*/
final VFSGroupDataset<FImage> groupedFaces = new VFSGroupDataset<FImage>(
"zip:http://datasets.openimaj.org/att_faces.zip", ImageUtilities.FIMAGE_READER);
for (final Entry<String, VFSListDataset<FImage>> entry : groupedFaces.entrySet()) {
DisplayUtilities.display(entry.getKey(), entry.getValue());
}
/**
* Search for cats on Flickr
*/
final FlickrAPIToken flickrToken = DefaultTokenFactory.get(FlickrAPIToken.class);
final FlickrImageDataset<FImage> cats = FlickrImageDataset.create(ImageUtilities.FIMAGE_READER, flickrToken,
"cat", 10);
DisplayUtilities.display("Cats", cats);
/**
* Search for pics of Arnie on Bing
*/
final BingAPIToken bingToken = DefaultTokenFactory.get(BingAPIToken.class);
final BingImageDataset<MBFImage> arnie = BingImageDataset.create(ImageUtilities.MBFIMAGE_READER, bingToken,
"Arnold Schwarzenegger", 10);
DisplayUtilities.display("Arnie", arnie);
}
示例8: main
import org.openimaj.data.dataset.VFSGroupDataset; //導入依賴的package包/類
/**
* Main method
*
* @param args
* @throws IOException
*/
public static void main(String[] args) throws IOException {
/*
* Load the data, and create some training and test data
*/
final VFSGroupDataset<FImage> dataset =
new VFSGroupDataset<FImage>("zip:http://datasets.openimaj.org/att_faces.zip",
ImageUtilities.FIMAGE_READER);
final GroupedRandomSplitter<String, FImage> splits = new GroupedRandomSplitter<String, FImage>(dataset, 5, 0, 5);
final GroupedDataset<String, ListDataset<FImage>, FImage> training = splits.getTrainingDataset();
final GroupedDataset<String, ListDataset<FImage>, FImage> testing = splits.getTestDataset();
/*
* Configure recogniser
*/
final FaceAligner<DetectedFace> aligner = new IdentityAligner<DetectedFace>();
final FaceDetector<DetectedFace, FImage> detector = new IdentityFaceDetector<FImage>();
final EigenFaceRecogniser<DetectedFace, String> recogniser =
EigenFaceRecogniser.create(100, aligner, 1, DoubleFVComparison.EUCLIDEAN);
final FaceRecognitionEngine<DetectedFace, String> engine =
new FaceRecognitionEngine<DetectedFace, String>(detector, recogniser);
/*
* Train
*/
engine.train(training);
/*
* Now we can test our performance on the test set
*/
double correct = 0, incorrect = 0;
for (final String truePerson : testing.getGroups()) {
for (final FImage face : testing.get(truePerson)) {
System.out.println(engine.recogniseBest(face));
final String bestPerson = engine.recogniseBest(face).get(0).secondObject().annotation;
System.out.println("Actual: " + truePerson + "\tguess: " + bestPerson);
if (truePerson.equals(bestPerson))
correct++;
else
incorrect++;
}
}
System.out.println("Accuracy: " + (correct / (correct + incorrect)));
}
示例9: getDataset
import org.openimaj.data.dataset.VFSGroupDataset; //導入依賴的package包/類
public static VFSGroupDataset<FImage> getDataset() throws FileSystemException {
return new VFSGroupDataset<FImage>("zip:" + tmpFile.toURI(), ImageUtilities.FIMAGE_READER);
}
示例10: getComponent
import org.openimaj.data.dataset.VFSGroupDataset; //導入依賴的package包/類
@Override
public Component getComponent(int width, int height) throws IOException {
// select random faces
final VFSGroupDataset<FImage> dataset = FaceDatasetProvider.getDataset();
for (int i = 0; i < faces.length; i++)
faces[i] = dataset.getRandomInstance();
// load basis
eigen = loadEigen(dataset, "eigenbasis.bin");
// setup display
final JPanel outer = new JPanel();
outer.setOpaque(false);
outer.setPreferredSize(new Dimension(width, height));
outer.setLayout(new BoxLayout(outer, BoxLayout.Y_AXIS));
final JPanel base = new JPanel();
base.setOpaque(false);
base.setPreferredSize(new Dimension(width, height - 50));
base.setLayout(new FlowLayout());
draw(10);
createImageComponents(base);
outer.add(base);
final JPanel controls = new JPanel();
controls.setOpaque(false);
final JLabel label = new JLabel("Number of dimensions:");
label.setFont(FONT);
controls.add(label);
final JTextField numDims = new JTextField(3);
numDims.setFont(FONT);
numDims.setEditable(false);
numDims.setBorder(null);
numDims.setText("10");
final JSlider slider = new JSlider(0, eigen.getNumComponents(), 10);
slider.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
final int nd = ((JSlider) e.getSource()).getValue();
if (!((JSlider) e.getSource()).getValueIsAdjusting()) {
draw(nd);
update();
}
numDims.setText(nd + "");
}
});
controls.add(slider);
controls.add(numDims);
outer.add(controls);
return outer;
}
示例11: getImages
import org.openimaj.data.dataset.VFSGroupDataset; //導入依賴的package包/類
/**
* Get a dataset of the Caltech 101 images. If the dataset hasn't been
* downloaded, it will be fetched automatically and stored in the OpenIMAJ
* data directory. The images in the dataset are grouped by their class.
*
* @see DataUtils#getDataDirectory()
*
* @param reader
* @return a dataset of images
* @throws IOException
* if a problem occurs loading the dataset
*/
public static <IMAGE extends Image<?, IMAGE>> VFSGroupDataset<IMAGE> getImages(InputStreamObjectReader<IMAGE> reader)
throws IOException
{
return new VFSGroupDataset<IMAGE>(downloadAndGetImagePath(), reader);
}
示例12: getData
import org.openimaj.data.dataset.VFSGroupDataset; //導入依賴的package包/類
/**
* Get a dataset of the Caltech 101 images and metadata. If the dataset
* hasn't been downloaded, it will be fetched automatically and stored in
* the OpenIMAJ data directory. The images in the dataset are grouped by
* their class.
*
* @see DataUtils#getDataDirectory()
*
* @param reader
* a reader for reading images (usually a
* {@link ImageUtilities#FIMAGE_READER} or
* {@link ImageUtilities#MBFIMAGE_READER}).
* @return a dataset of images and metadate
* @throws IOException
* if a problem occurs loading the dataset
*/
public static <IMAGE extends Image<?, IMAGE>> VFSGroupDataset<Record<IMAGE>> getData(
InputStreamObjectReader<IMAGE> reader) throws IOException
{
return new VFSGroupDataset<Record<IMAGE>>(downloadAndGetImagePath(), new RecordReader<IMAGE>(reader));
}