當前位置: 首頁>>代碼示例>>Java>>正文


Java Sgd類代碼示例

本文整理匯總了Java中org.nd4j.linalg.learning.config.Sgd的典型用法代碼示例。如果您正苦於以下問題:Java Sgd類的具體用法?Java Sgd怎麽用?Java Sgd使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


Sgd類屬於org.nd4j.linalg.learning.config包,在下文中一共展示了Sgd類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: testNoImprovementNEpochsTermination

import org.nd4j.linalg.learning.config.Sgd; //導入依賴的package包/類
@Test
public void testNoImprovementNEpochsTermination() {
    //Idea: terminate training if score (test set loss) does not improve for 5 consecutive epochs
    //Simulate this by setting LR = 0.0

    Nd4j.getRandom().setSeed(12345);
    MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().seed(12345)
                    .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
                    .updater(new Sgd(0.0)).weightInit(WeightInit.XAVIER).list()
                    .layer(0, new OutputLayer.Builder().nIn(4).nOut(3)
                                    .lossFunction(LossFunctions.LossFunction.MCXENT).build())
                    .pretrain(false).backprop(true).build();
    MultiLayerNetwork net = new MultiLayerNetwork(conf);
    net.setListeners(new ScoreIterationListener(1));

    DataSetIterator irisIter = new IrisDataSetIterator(150, 150);

    EarlyStoppingModelSaver<MultiLayerNetwork> saver = new InMemoryModelSaver<>();
    EarlyStoppingConfiguration<MultiLayerNetwork> esConf =
                    new EarlyStoppingConfiguration.Builder<MultiLayerNetwork>()
                                    .epochTerminationConditions(new MaxEpochsTerminationCondition(100),
                                                    new ScoreImprovementEpochTerminationCondition(5))
                                    .iterationTerminationConditions(
                                                    new MaxTimeIterationTerminationCondition(3, TimeUnit.SECONDS),
                                                    new MaxScoreIterationTerminationCondition(7.5)) //Initial score is ~2.5
                                    .scoreCalculator(new DataSetLossCalculator(irisIter, true)).modelSaver(saver)
                                    .build();

    IEarlyStoppingTrainer trainer = new EarlyStoppingTrainer(esConf, net, irisIter);
    EarlyStoppingResult result = trainer.fit();

    //Expect no score change due to 0 LR -> terminate after 6 total epochs
    assertEquals(6, result.getTotalEpochs());
    assertEquals(0, result.getBestModelEpoch());
    assertEquals(EarlyStoppingResult.TerminationReason.EpochTerminationCondition, result.getTerminationReason());
    String expDetails = new ScoreImprovementEpochTerminationCondition(5).toString();
    assertEquals(expDetails, result.getTerminationDetails());
}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:39,代碼來源:TestEarlyStopping.java

示例2: getOriginalNet

import org.nd4j.linalg.learning.config.Sgd; //導入依賴的package包/類
public static MultiLayerNetwork getOriginalNet(int seed){
    MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
            .seed(seed)
            .weightInit(WeightInit.XAVIER)
            .activation(Activation.TANH)
            .convolutionMode(ConvolutionMode.Same)
            .updater(new Sgd(0.3))
            .list()
            .layer(new ConvolutionLayer.Builder().nOut(3).kernelSize(2,2).stride(1,1).build())
            .layer(new SubsamplingLayer.Builder().kernelSize(2,2).stride(1,1).build())
            .layer(new ConvolutionLayer.Builder().nIn(3).nOut(3).kernelSize(2,2).stride(1,1).build())
            .layer(new DenseLayer.Builder().nOut(64).build())
            .layer(new DenseLayer.Builder().nIn(64).nOut(64).build())
            .layer(new OutputLayer.Builder().nIn(64).nOut(10).lossFunction(LossFunctions.LossFunction.MSE).build())
            .setInputType(InputType.convolutionalFlat(28,28,1))
            .build();


    MultiLayerNetwork net = new MultiLayerNetwork(conf);
    net.init();
    return net;
}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:23,代碼來源:TestFrozenLayers.java

示例3: getOriginalGraph

import org.nd4j.linalg.learning.config.Sgd; //導入依賴的package包/類
public static ComputationGraph getOriginalGraph(int seed){
    ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder()
            .seed(seed)
            .weightInit(WeightInit.XAVIER)
            .activation(Activation.TANH)
            .convolutionMode(ConvolutionMode.Same)
            .updater(new Sgd(0.3))
            .graphBuilder()
            .addInputs("in")
            .layer("0", new ConvolutionLayer.Builder().nOut(3).kernelSize(2,2).stride(1,1).build(), "in")
            .layer("1", new SubsamplingLayer.Builder().kernelSize(2,2).stride(1,1).build(), "0")
            .layer("2", new ConvolutionLayer.Builder().nIn(3).nOut(3).kernelSize(2,2).stride(1,1).build(), "1")
            .layer("3", new DenseLayer.Builder().nOut(64).build(), "2")
            .layer("4", new DenseLayer.Builder().nIn(64).nOut(64).build(), "3")
            .layer("5", new OutputLayer.Builder().nIn(64).nOut(10).lossFunction(LossFunctions.LossFunction.MSE).build(), "4")
            .setOutputs("5")
            .setInputTypes(InputType.convolutionalFlat(28,28,1))
            .build();


    ComputationGraph net = new ComputationGraph(conf);
    net.init();
    return net;
}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:25,代碼來源:TestFrozenLayers.java

示例4: testSetParams

import org.nd4j.linalg.learning.config.Sgd; //導入依賴的package包/類
@Test
public void testSetParams() {
    NeuralNetConfiguration conf = new NeuralNetConfiguration.Builder()
                    .optimizationAlgo(OptimizationAlgorithm.LINE_GRADIENT_DESCENT)
                    .updater(new Sgd(1e-1))
                    .layer(new org.deeplearning4j.nn.conf.layers.OutputLayer.Builder().nIn(4).nOut(3)
                                    .weightInit(WeightInit.ZERO).activation(Activation.SOFTMAX)
                                    .lossFunction(LossFunctions.LossFunction.MCXENT).build())
                    .build();

    int numParams = conf.getLayer().initializer().numParams(conf);
    INDArray params = Nd4j.create(1, numParams);
    OutputLayer l = (OutputLayer) conf.getLayer().instantiate(conf,
                    Collections.<IterationListener>singletonList(new ScoreIterationListener(1)), 0, params, true);
    params = l.params();
    l.setParams(params);
    assertEquals(params, l.params());
}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:19,代碼來源:OutputLayerTest.java

示例5: getDenseMLNConfig

import org.nd4j.linalg.learning.config.Sgd; //導入依賴的package包/類
private static MultiLayerNetwork getDenseMLNConfig(boolean backprop, boolean pretrain) {
    int numInputs = 4;
    int outputNum = 3;
    long seed = 6;

    MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().seed(seed)
                    .updater(new Sgd(1e-3)).l1(0.3).l2(1e-3).list()
                    .layer(0, new org.deeplearning4j.nn.conf.layers.DenseLayer.Builder().nIn(numInputs).nOut(3)
                                    .activation(Activation.TANH).weightInit(WeightInit.XAVIER).build())
                    .layer(1, new org.deeplearning4j.nn.conf.layers.DenseLayer.Builder().nIn(3).nOut(2)
                                    .activation(Activation.TANH).weightInit(WeightInit.XAVIER).build())
                    .layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
                                    .weightInit(WeightInit.XAVIER).nIn(2).nOut(outputNum).build())
                    .backprop(backprop).pretrain(pretrain).build();

    MultiLayerNetwork model = new MultiLayerNetwork(conf);
    model.init();
    return model;

}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:21,代碼來源:DenseTest.java

示例6: testAutoEncoder

import org.nd4j.linalg.learning.config.Sgd; //導入依賴的package包/類
@Test
public void testAutoEncoder() throws Exception {

    MnistDataFetcher fetcher = new MnistDataFetcher(true);
    NeuralNetConfiguration conf = new NeuralNetConfiguration.Builder()
                    .optimizationAlgo(OptimizationAlgorithm.LINE_GRADIENT_DESCENT).updater(new Sgd(0.1))
                    .layer(new org.deeplearning4j.nn.conf.layers.AutoEncoder.Builder().nIn(784).nOut(600)
                                    .corruptionLevel(0.6)
                                    .lossFunction(LossFunctions.LossFunction.RECONSTRUCTION_CROSSENTROPY).build())
                    .build();


    fetcher.fetch(100);
    DataSet d2 = fetcher.next();

    INDArray input = d2.getFeatureMatrix();
    int numParams = conf.getLayer().initializer().numParams(conf);
    INDArray params = Nd4j.create(1, numParams);
    AutoEncoder da = (AutoEncoder) conf.getLayer().instantiate(conf,
                    Arrays.<IterationListener>asList(new ScoreIterationListener(1)), 0, params, true);
    assertEquals(da.params(), da.params());
    assertEquals(471784, da.params().length());
    da.setParams(da.params());
    da.setBackpropGradientsViewArray(Nd4j.create(1, params.length()));
    da.fit(input);
}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:27,代碼來源:AutoEncoderTest.java

示例7: testBackProp

import org.nd4j.linalg.learning.config.Sgd; //導入依賴的package包/類
@Test
public void testBackProp() throws Exception {
    MnistDataFetcher fetcher = new MnistDataFetcher(true);
    //        LayerFactory layerFactory = LayerFactories.getFactory(new org.deeplearning4j.nn.conf.layers.AutoEncoder());
    NeuralNetConfiguration conf = new NeuralNetConfiguration.Builder()
                    .optimizationAlgo(OptimizationAlgorithm.LINE_GRADIENT_DESCENT)
                    .updater(new Sgd(0.1))
                    .layer(new org.deeplearning4j.nn.conf.layers.AutoEncoder.Builder().nIn(784).nOut(600)
                                    .corruptionLevel(0.6)
                                    .lossFunction(LossFunctions.LossFunction.RECONSTRUCTION_CROSSENTROPY).build())
                    .build();

    fetcher.fetch(100);
    DataSet d2 = fetcher.next();

    INDArray input = d2.getFeatureMatrix();
    int numParams = conf.getLayer().initializer().numParams(conf);
    INDArray params = Nd4j.create(1, numParams);
    AutoEncoder da = (AutoEncoder) conf.getLayer().instantiate(conf, null, 0, params, true);
    Gradient g = new DefaultGradient();
    g.gradientForVariable().put(DefaultParamInitializer.WEIGHT_KEY, da.decode(da.activate(input)).sub(input));
}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:23,代碼來源:AutoEncoderTest.java

示例8: getIrisMLPSimpleConfig

import org.nd4j.linalg.learning.config.Sgd; //導入依賴的package包/類
/** Very simple back-prop config set up for Iris.
 * Learning Rate = 0.1
 * No regularization, no Adagrad, no momentum etc. One iteration.
 */
private static MultiLayerConfiguration getIrisMLPSimpleConfig(int[] hiddenLayerSizes,
                Activation activationFunction) {
    NeuralNetConfiguration.ListBuilder lb = new NeuralNetConfiguration.Builder().updater(new Sgd(0.1))
                .seed(12345L).list();

    for (int i = 0; i < hiddenLayerSizes.length; i++) {
        int nIn = (i == 0 ? 4 : hiddenLayerSizes[i - 1]);
        lb.layer(i, new DenseLayer.Builder().nIn(nIn).nOut(hiddenLayerSizes[i]).weightInit(WeightInit.XAVIER)
                        .activation(activationFunction).build());
    }

    lb.layer(hiddenLayerSizes.length,
                    new OutputLayer.Builder(LossFunction.MCXENT).nIn(hiddenLayerSizes[hiddenLayerSizes.length - 1])
                                    .nOut(3).weightInit(WeightInit.XAVIER)
                                    .activation(activationFunction.equals(Activation.IDENTITY) ? Activation.IDENTITY
                                                    : Activation.SOFTMAX)
                                    .build());
    lb.pretrain(false).backprop(true);

    return lb.build();
}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:26,代碼來源:BackPropMLPTest.java

示例9: testCompGraphNullLayer

import org.nd4j.linalg.learning.config.Sgd; //導入依賴的package包/類
@Test
public void testCompGraphNullLayer() {
    ComputationGraphConfiguration.GraphBuilder gb = new NeuralNetConfiguration.Builder()
                    .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).updater(new Sgd(0.01))
                    .seed(42).miniBatch(false).l1(0.2).l2(0.2)
                    /* Graph Builder */
                    .updater(Updater.RMSPROP).graphBuilder().addInputs("in")
                    .addLayer("L" + 1,
                                    new GravesLSTM.Builder().nIn(20).updater(Updater.RMSPROP).nOut(10)
                                                    .weightInit(WeightInit.XAVIER)
                                                    .dropOut(0.4).l1(0.3).activation(Activation.SIGMOID).build(),
                                    "in")
                    .addLayer("output",
                                    new RnnOutputLayer.Builder().nIn(20).nOut(10).activation(Activation.SOFTMAX)
                                                    .weightInit(WeightInit.RELU_UNIFORM).build(),
                                    "L" + 1)
                    .setOutputs("output");
    ComputationGraphConfiguration conf = gb.build();
    ComputationGraph cg = new ComputationGraph(conf);
    cg.init();
}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:22,代碼來源:LayerConfigValidationTest.java

示例10: getNetwork

import org.nd4j.linalg.learning.config.Sgd; //導入依賴的package包/類
private MultiLayerNetwork getNetwork() {
    int nIn = 5;
    int nOut = 6;

    MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().seed(12345).l1(0.01).l2(0.01)
            .updater(new Sgd(0.1)).activation(Activation.TANH).weightInit(WeightInit.XAVIER).list()
            .layer(0, new DenseLayer.Builder().nIn(nIn).nOut(20).build())
            .layer(1, new DenseLayer.Builder().nIn(20).nOut(30).build()).layer(2, new OutputLayer.Builder()
                    .lossFunction(LossFunctions.LossFunction.MSE).nIn(30).nOut(nOut).build())
            .build();

    MultiLayerNetwork net = new MultiLayerNetwork(conf);
    net.init();

    return net;
}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:17,代碼來源:ModelGuesserTest.java

示例11: testWriteMLNModel

import org.nd4j.linalg.learning.config.Sgd; //導入依賴的package包/類
@Test
public void testWriteMLNModel() throws Exception {
    int nIn = 5;
    int nOut = 6;

    MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().seed(12345).l1(0.01)
                    .l2(0.01).updater(new Sgd(0.1)).activation(Activation.TANH).weightInit(WeightInit.XAVIER).list()
                    .layer(0, new DenseLayer.Builder().nIn(nIn).nOut(20).build())
                    .layer(1, new DenseLayer.Builder().nIn(20).nOut(30).build()).layer(2, new OutputLayer.Builder()
                                    .lossFunction(LossFunctions.LossFunction.MSE).nIn(30).nOut(nOut).build())
                    .build();

    MultiLayerNetwork net = new MultiLayerNetwork(conf);
    net.init();

    File tempFile = File.createTempFile("tsfs", "fdfsdf");
    tempFile.deleteOnExit();

    ModelSerializer.writeModel(net, tempFile, true);

    MultiLayerNetwork network = ModelSerializer.restoreMultiLayerNetwork(tempFile);

    assertEquals(network.getLayerWiseConfigurations().toJson(), net.getLayerWiseConfigurations().toJson());
    assertEquals(net.params(), network.params());
    assertEquals(net.getUpdater().getStateViewArray(), network.getUpdater().getStateViewArray());
}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:27,代碼來源:ModelSerializerTest.java

示例12: testWriteCGModel

import org.nd4j.linalg.learning.config.Sgd; //導入依賴的package包/類
@Test
public void testWriteCGModel() throws Exception {
    ComputationGraphConfiguration config = new NeuralNetConfiguration.Builder()
                    .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).updater(new Sgd(0.1))
                    .graphBuilder().addInputs("in")
                    .addLayer("dense", new DenseLayer.Builder().nIn(4).nOut(2).build(), "in").addLayer("out",
                                    new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT).nIn(2).nOut(3)
                                                    .build(),
                                    "dense")
                    .setOutputs("out").pretrain(false).backprop(true).build();

    ComputationGraph cg = new ComputationGraph(config);
    cg.init();

    File tempFile = File.createTempFile("tsfs", "fdfsdf");
    tempFile.deleteOnExit();

    ModelSerializer.writeModel(cg, tempFile, true);

    ComputationGraph network = ModelSerializer.restoreComputationGraph(tempFile);

    assertEquals(network.getConfiguration().toJson(), cg.getConfiguration().toJson());
    assertEquals(cg.params(), network.params());
    assertEquals(cg.getUpdater().getStateViewArray(), network.getUpdater().getStateViewArray());
}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:26,代碼來源:ModelSerializerTest.java

示例13: testWriteCGModelInputStream

import org.nd4j.linalg.learning.config.Sgd; //導入依賴的package包/類
@Test
public void testWriteCGModelInputStream() throws Exception {
    ComputationGraphConfiguration config = new NeuralNetConfiguration.Builder()
                    .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).updater(new Sgd(0.1))
                    .graphBuilder().addInputs("in")
                    .addLayer("dense", new DenseLayer.Builder().nIn(4).nOut(2).build(), "in").addLayer("out",
                                    new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT).nIn(2).nOut(3)
                                                    .build(),
                                    "dense")
                    .setOutputs("out").pretrain(false).backprop(true).build();

    ComputationGraph cg = new ComputationGraph(config);
    cg.init();

    File tempFile = File.createTempFile("tsfs", "fdfsdf");
    tempFile.deleteOnExit();

    ModelSerializer.writeModel(cg, tempFile, true);
    FileInputStream fis = new FileInputStream(tempFile);

    ComputationGraph network = ModelSerializer.restoreComputationGraph(fis);

    assertEquals(network.getConfiguration().toJson(), cg.getConfiguration().toJson());
    assertEquals(cg.params(), network.params());
    assertEquals(cg.getUpdater().getStateViewArray(), network.getUpdater().getStateViewArray());
}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:27,代碼來源:ModelSerializerTest.java

示例14: test

import org.nd4j.linalg.learning.config.Sgd; //導入依賴的package包/類
@Test
public void test() throws IOException {

    MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().list()
                    .layer(0, new DenseLayer.Builder().nIn(10).nOut(10).build())
                    .layer(1, new OutputLayer.Builder().nIn(10).nOut(10).build()).build();

    MultiLayerNetwork net = new MultiLayerNetwork(conf);
    net.init();


    MultiLayerNetwork net2 =
                    new TransferLearning.Builder(net)
                                    .fineTuneConfiguration(
                                                    new FineTuneConfiguration.Builder().updater(new Sgd(0.01)).build())
                                    .setFeatureExtractor(0).build();

    File f = Files.createTempFile("dl4jTestTransferStatsCollection", "bin").toFile();
    f.delete();
    net2.setListeners(new StatsListener(new FileStatsStorage(f)));

    //Previosuly: failed on frozen layers
    net2.fit(new DataSet(Nd4j.rand(8, 10), Nd4j.rand(8, 10)));

    f.deleteOnExit();
}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:27,代碼來源:TestTransferStatsCollection.java

示例15: testEarlyStoppingEveryNEpoch

import org.nd4j.linalg.learning.config.Sgd; //導入依賴的package包/類
@Test
public void testEarlyStoppingEveryNEpoch() {
    MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
                    .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
                    .updater(new Sgd(0.01)).weightInit(WeightInit.XAVIER).list()
                    .layer(0, new OutputLayer.Builder().nIn(4).nOut(3)
                                    .lossFunction(LossFunctions.LossFunction.MCXENT).build())
                    .pretrain(false).backprop(true).build();
    MultiLayerNetwork net = new MultiLayerNetwork(conf);
    net.setListeners(new ScoreIterationListener(1));

    DataSetIterator irisIter = new IrisDataSetIterator(150, 150);
    EarlyStoppingModelSaver<MultiLayerNetwork> saver = new InMemoryModelSaver<>();
    EarlyStoppingConfiguration<MultiLayerNetwork> esConf =
                    new EarlyStoppingConfiguration.Builder<MultiLayerNetwork>()
                                    .epochTerminationConditions(new MaxEpochsTerminationCondition(5))
                                    .scoreCalculator(new DataSetLossCalculator(irisIter, true))
                                    .evaluateEveryNEpochs(2).modelSaver(saver).build();

    IEarlyStoppingTrainer<MultiLayerNetwork> trainer = new EarlyStoppingTrainer(esConf, net, irisIter);

    EarlyStoppingResult<MultiLayerNetwork> result = trainer.fit();
    System.out.println(result);

    assertEquals(5, result.getTotalEpochs());
    assertEquals(EarlyStoppingResult.TerminationReason.EpochTerminationCondition, result.getTerminationReason());
}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:28,代碼來源:TestEarlyStopping.java


注:本文中的org.nd4j.linalg.learning.config.Sgd類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。