本文整理匯總了Java中org.nd4j.linalg.learning.config.IUpdater類的典型用法代碼示例。如果您正苦於以下問題:Java IUpdater類的具體用法?Java IUpdater怎麽用?Java IUpdater使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
IUpdater類屬於org.nd4j.linalg.learning.config包,在下文中一共展示了IUpdater類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: setLearningRate
import org.nd4j.linalg.learning.config.IUpdater; //導入依賴的package包/類
private static void setLearningRate(MultiLayerNetwork net, int layerNumber, double newLr, ISchedule newLrSchedule, boolean refreshUpdater) {
Layer l = net.getLayer(layerNumber).conf().getLayer();
if (l instanceof BaseLayer) {
BaseLayer bl = (BaseLayer) l;
IUpdater u = bl.getIUpdater();
if (u != null && u.hasLearningRate()) {
if (newLrSchedule != null) {
u.setLrAndSchedule(Double.NaN, newLrSchedule);
} else {
u.setLrAndSchedule(newLr, null);
}
}
//Need to refresh the updater - if we change the LR (or schedule) we may rebuild the updater blocks, which are
// built by creating blocks of params with the same configuration
if (refreshUpdater) {
refreshUpdater(net);
}
}
}
示例2: getGraphConfCNN
import org.nd4j.linalg.learning.config.IUpdater; //導入依賴的package包/類
private static ComputationGraphConfiguration getGraphConfCNN(int seed, IUpdater updater) {
Nd4j.getRandom().setSeed(seed);
ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder()
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.weightInit(WeightInit.XAVIER).updater(updater).seed(seed).graphBuilder()
.addInputs("in")
.addLayer("0", new ConvolutionLayer.Builder().nOut(3).kernelSize(2, 2).stride(1, 1)
.padding(0, 0).activation(Activation.TANH).build(), "in")
.addLayer("1", new ConvolutionLayer.Builder().nOut(3).kernelSize(2, 2).stride(1, 1)
.padding(0, 0).activation(Activation.TANH).build(), "0")
.addLayer("2", new OutputLayer.Builder().lossFunction(LossFunctions.LossFunction.MSE).nOut(10)
.build(), "1")
.setOutputs("2").setInputTypes(InputType.convolutional(10, 10, 3)).pretrain(false)
.backprop(true).build();
return conf;
}
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:17,代碼來源:TestCompareParameterAveragingSparkVsSingleMachine.java
示例3: testUpdaters
import org.nd4j.linalg.learning.config.IUpdater; //導入依賴的package包/類
@Test
public void testUpdaters() {
SparkDl4jMultiLayer sparkNet = getBasicNetwork();
MultiLayerNetwork netCopy = sparkNet.getNetwork().clone();
netCopy.fit(data);
IUpdater expectedUpdater = ((BaseLayer) netCopy.conf().getLayer()).getIUpdater();
double expectedLR = ((Nesterovs)((BaseLayer) netCopy.conf().getLayer()).getIUpdater()).getLearningRate();
double expectedMomentum = ((Nesterovs)((BaseLayer) netCopy.conf().getLayer()).getIUpdater()).getMomentum();
IUpdater actualUpdater = ((BaseLayer) sparkNet.getNetwork().conf().getLayer()).getIUpdater();
sparkNet.fit(sparkData);
double actualLR = ((Nesterovs)((BaseLayer) sparkNet.getNetwork().conf().getLayer()).getIUpdater()).getLearningRate();
double actualMomentum = ((Nesterovs)((BaseLayer) sparkNet.getNetwork().conf().getLayer()).getIUpdater()).getMomentum();
assertEquals(expectedUpdater, actualUpdater);
assertEquals(expectedLR, actualLR, 0.01);
assertEquals(expectedMomentum, actualMomentum, 0.01);
}
示例4: use
import org.nd4j.linalg.learning.config.IUpdater; //導入依賴的package包/類
@OptionMetadata(
displayName = "updater",
description = "The updater to use (default = SGD).",
commandLineParamName = "updater",
commandLineParamSynopsis = "-updater <string>",
displayOrder = 12
)
public IUpdater getUpdater() {
return iUpdater;
}
示例5: updaterConfigurationsEquals
import org.nd4j.linalg.learning.config.IUpdater; //導入依賴的package包/類
public static boolean updaterConfigurationsEquals(Layer layer1, String param1, Layer layer2, String param2) {
org.deeplearning4j.nn.conf.layers.Layer l1 = layer1.conf().getLayer();
org.deeplearning4j.nn.conf.layers.Layer l2 = layer2.conf().getLayer();
IUpdater u1 = l1.getUpdaterByParam(param1);
IUpdater u2 = l2.getUpdaterByParam(param2);
//For updaters to be equal (and hence combinable), we require that:
//(a) The updater-specific configurations are equal (inc. LR, LR/momentum schedules etc)
//(b) If one or more of the params are pretrainable params, they are in the same layer
// This last point is necessary as we don't want to modify the pretrain gradient/updater state during
// backprop, or modify the pretrain gradient/updater state of one layer while training another
if (!u1.equals(u2)) {
//Different updaters or different config
return false;
}
boolean isPretrainParam1 = layer1.conf().getLayer().isPretrainParam(param1);
boolean isPretrainParam2 = layer2.conf().getLayer().isPretrainParam(param2);
if (isPretrainParam1 || isPretrainParam2) {
//One or both of params are pretrainable.
//Either layers differ -> don't want to combine a pretrain updaters across layers
//Or one is pretrain and the other isn't -> don't want to combine pretrain updaters within a layer
return layer1 == layer2 && isPretrainParam1 && isPretrainParam2;
}
return true;
}
示例6: getUpdaterByParam
import org.nd4j.linalg.learning.config.IUpdater; //導入依賴的package包/類
@Override
public IUpdater getUpdaterByParam(String paramName) {
switch (paramName) {
case BatchNormalizationParamInitializer.BETA:
case BatchNormalizationParamInitializer.GAMMA:
return iUpdater;
case BatchNormalizationParamInitializer.GLOBAL_MEAN:
case BatchNormalizationParamInitializer.GLOBAL_VAR:
return new NoOp();
default:
throw new IllegalArgumentException("Unknown parameter: \"" + paramName + "\"");
}
}
示例7: getUpdaterByParam
import org.nd4j.linalg.learning.config.IUpdater; //導入依賴的package包/類
/**
* Get the updater for the given parameter. Typically the same updater will be used for all updaters, but this
* is not necessarily the case
*
* @param paramName Parameter name
* @return IUpdater for the parameter
*/
@Override
public IUpdater getUpdaterByParam(String paramName) {
if(biasUpdater != null && initializer().isBiasParam(this, paramName)){
return biasUpdater;
}
return iUpdater;
}
示例8: getUpdaterByParam
import org.nd4j.linalg.learning.config.IUpdater; //導入依賴的package包/類
@Override
public IUpdater getUpdaterByParam(String paramName) {
// center loss utilizes alpha directly for this so any updater can be used for other layers
switch (paramName) {
case CenterLossParamInitializer.CENTER_KEY:
return new NoOp();
default:
return iUpdater;
}
}
示例9: getConf
import org.nd4j.linalg.learning.config.IUpdater; //導入依賴的package包/類
private static MultiLayerConfiguration getConf(int seed, IUpdater updater) {
Nd4j.getRandom().setSeed(seed);
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.weightInit(WeightInit.XAVIER).updater(updater).seed(seed).list()
.layer(0, new DenseLayer.Builder().nIn(10).nOut(10).build()).layer(1, new OutputLayer.Builder()
.lossFunction(LossFunctions.LossFunction.MSE).nIn(10).nOut(10).build())
.pretrain(false).backprop(true).build();
return conf;
}
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:11,代碼來源:TestCompareParameterAveragingSparkVsSingleMachine.java
示例10: getConfCNN
import org.nd4j.linalg.learning.config.IUpdater; //導入依賴的package包/類
private static MultiLayerConfiguration getConfCNN(int seed, IUpdater updater) {
Nd4j.getRandom().setSeed(seed);
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.weightInit(WeightInit.XAVIER).updater(updater).seed(seed).list()
.layer(0, new ConvolutionLayer.Builder().nOut(3).kernelSize(2, 2).stride(1, 1).padding(0, 0)
.activation(Activation.TANH).build())
.layer(1, new ConvolutionLayer.Builder().nOut(3).kernelSize(2, 2).stride(1, 1).padding(0, 0)
.activation(Activation.TANH).build())
.layer(1, new OutputLayer.Builder().lossFunction(LossFunctions.LossFunction.MSE).nOut(10)
.build())
.setInputType(InputType.convolutional(10, 10, 3)).pretrain(false).backprop(true).build();
return conf;
}
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:15,代碼來源:TestCompareParameterAveragingSparkVsSingleMachine.java
示例11: getGraphConf
import org.nd4j.linalg.learning.config.IUpdater; //導入依賴的package包/類
private static ComputationGraphConfiguration getGraphConf(int seed, IUpdater updater) {
Nd4j.getRandom().setSeed(seed);
ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder()
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.weightInit(WeightInit.XAVIER).updater(updater).seed(seed).graphBuilder()
.addInputs("in")
.addLayer("0", new DenseLayer.Builder().nIn(10).nOut(10).build(), "in").addLayer("1",
new OutputLayer.Builder().lossFunction(LossFunctions.LossFunction.MSE).nIn(10)
.nOut(10).build(),
"0")
.setOutputs("1").pretrain(false).backprop(true).build();
return conf;
}
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:14,代碼來源:TestCompareParameterAveragingSparkVsSingleMachine.java
示例12: setUpdater
import org.nd4j.linalg.learning.config.IUpdater; //導入依賴的package包/類
public void setUpdater(IUpdater updater) {
iUpdater = updater;
}
示例13: copyConfigToLayer
import org.nd4j.linalg.learning.config.IUpdater; //導入依賴的package包/類
private void copyConfigToLayer(String layerName, Layer layer) {
if (layer.getIDropout() == null)
layer.setIDropout(idropOut);
if (layer instanceof BaseLayer) {
BaseLayer bLayer = (BaseLayer) layer;
if (Double.isNaN(bLayer.getL1()))
bLayer.setL1(l1);
if (Double.isNaN(bLayer.getL2()))
bLayer.setL2(l2);
if (bLayer.getActivationFn() == null)
bLayer.setActivationFn(activationFn);
if (bLayer.getWeightInit() == null)
bLayer.setWeightInit(weightInit);
if (Double.isNaN(bLayer.getBiasInit()))
bLayer.setBiasInit(biasInit);
//Configure weight noise:
if(weightNoise != null && ((BaseLayer) layer).getWeightNoise() == null){
((BaseLayer) layer).setWeightNoise(weightNoise.clone());
}
//Configure updaters:
if(iUpdater != null && bLayer.getIUpdater() == null){
bLayer.setIUpdater(iUpdater);
}
if(biasUpdater != null && bLayer.getBiasUpdater() == null){
bLayer.setBiasUpdater(biasUpdater);
}
if(bLayer.getIUpdater() == null && iUpdater == null && bLayer.initializer().numParams(bLayer) > 0){
//No updater set anywhere
IUpdater u = new Sgd();
bLayer.setIUpdater(u);
log.warn("*** No updater configuration is set for layer {} - defaulting to {} ***", layerName, u);
}
if (bLayer.getGradientNormalization() == null)
bLayer.setGradientNormalization(gradientNormalization);
if (Double.isNaN(bLayer.getGradientNormalizationThreshold()))
bLayer.setGradientNormalizationThreshold(gradientNormalizationThreshold);
}
if (layer instanceof ActivationLayer){
ActivationLayer al = (ActivationLayer)layer;
if(al.getActivationFn() == null)
al.setActivationFn(activationFn);
}
}
示例14: getUpdaterByParam
import org.nd4j.linalg.learning.config.IUpdater; //導入依賴的package包/類
@Override
public IUpdater getUpdaterByParam(String paramName) {
return null;
}
示例15: biasUpdater
import org.nd4j.linalg.learning.config.IUpdater; //導入依賴的package包/類
/**
* Gradient updater configuration, for the biases only. If not set, biases will use the updater as
* set by {@link #updater(IUpdater)}
*
* @param updater Updater to use for bias parameters
*/
public Builder biasUpdater(IUpdater updater){
this.biasUpdater = updater;
return this;
}