當前位置: 首頁>>代碼示例>>Java>>正文


Java ClusteringModelUtil類代碼示例

本文整理匯總了Java中org.jpmml.converter.clustering.ClusteringModelUtil的典型用法代碼示例。如果您正苦於以下問題:Java ClusteringModelUtil類的具體用法?Java ClusteringModelUtil怎麽用?Java ClusteringModelUtil使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


ClusteringModelUtil類屬於org.jpmml.converter.clustering包,在下文中一共展示了ClusteringModelUtil類的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: encodeModel

import org.jpmml.converter.clustering.ClusteringModelUtil; //導入依賴的package包/類
@Override
public ClusteringModel encodeModel(Schema schema){
	KMeansModel model = getTransformer();

	List<Cluster> clusters = new ArrayList<>();

	Vector[] clusterCenters = model.clusterCenters();
	for(int i = 0; i < clusterCenters.length; i++){
		Cluster cluster = new Cluster()
			.setId(String.valueOf(i))
			.setArray(PMMLUtil.createRealArray(VectorUtil.toList(clusterCenters[i])));

		clusters.add(cluster);
	}

	ComparisonMeasure comparisonMeasure = new ComparisonMeasure(ComparisonMeasure.Kind.DISTANCE)
		.setCompareFunction(CompareFunction.ABS_DIFF)
		.setMeasure(new SquaredEuclidean());

	return new ClusteringModel(MiningFunction.CLUSTERING, ClusteringModel.ModelClass.CENTER_BASED, clusters.size(), ModelUtil.createMiningSchema(schema.getLabel()), comparisonMeasure, ClusteringModelUtil.createClusteringFields(schema.getFeatures()), clusters);
}
 
開發者ID:jpmml,項目名稱:jpmml-sparkml,代碼行數:22,代碼來源:KMeansModelConverter.java

示例2: encodeModel

import org.jpmml.converter.clustering.ClusteringModelUtil; //導入依賴的package包/類
@Override
public ClusteringModel encodeModel(Schema schema){
	int[] shape = getClusterCentersShape();

	int numberOfClusters = shape[0];
	int numberOfFeatures = shape[1];

	List<? extends Number> clusterCenters = getClusterCenters();
	List<Integer> labels = getLabels();

	Multiset<Integer> labelCounts = HashMultiset.create();

	if(labels != null){
		labelCounts.addAll(labels);
	}

	List<Cluster> clusters = new ArrayList<>();

	for(int i = 0; i < numberOfClusters; i++){
		Cluster cluster = new Cluster()
			.setId(String.valueOf(i))
			.setSize((labelCounts.size () > 0 ? labelCounts.count(i) : null))
			.setArray(PMMLUtil.createRealArray(CMatrixUtil.getRow(clusterCenters, numberOfClusters, numberOfFeatures, i)));

		clusters.add(cluster);
	}

	ComparisonMeasure comparisonMeasure = new ComparisonMeasure(ComparisonMeasure.Kind.DISTANCE)
		.setCompareFunction(CompareFunction.ABS_DIFF)
		.setMeasure(new SquaredEuclidean());

	ClusteringModel clusteringModel = new ClusteringModel(MiningFunction.CLUSTERING, ClusteringModel.ModelClass.CENTER_BASED, numberOfClusters, ModelUtil.createMiningSchema(schema.getLabel()), comparisonMeasure, ClusteringModelUtil.createClusteringFields(schema.getFeatures()), clusters)
		.setOutput(ClusteringModelUtil.createOutput(FieldName.create("Cluster"), DataType.DOUBLE, clusters));

	return clusteringModel;
}
 
開發者ID:jpmml,項目名稱:jpmml-sklearn,代碼行數:37,代碼來源:KMeans.java

示例3: encodeModel

import org.jpmml.converter.clustering.ClusteringModelUtil; //導入依賴的package包/類
@Override
public Model encodeModel(Schema schema){
	RGenericVector kmeans = getObject();

	RDoubleVector centers = (RDoubleVector)kmeans.getValue("centers");
	RIntegerVector size = (RIntegerVector)kmeans.getValue("size");

	RIntegerVector centersDim = centers.dim();

	int rows = centersDim.getValue(0);
	int columns = centersDim.getValue(1);

	List<Cluster> clusters = new ArrayList<>();

	RStringVector rowNames = centers.dimnames(0);
	for(int i = 0; i < rowNames.size(); i++){
		Cluster cluster = new Cluster()
			.setId(String.valueOf(i + 1))
			.setName(rowNames.getValue(i))
			.setSize(size.getValue(i))
			.setArray(PMMLUtil.createRealArray(FortranMatrixUtil.getRow(centers.getValues(), rows, columns, i)));

		clusters.add(cluster);
	}

	ComparisonMeasure comparisonMeasure = new ComparisonMeasure(ComparisonMeasure.Kind.DISTANCE)
		.setCompareFunction(CompareFunction.ABS_DIFF)
		.setMeasure(new SquaredEuclidean());

	ClusteringModel clusteringModel = new ClusteringModel(MiningFunction.CLUSTERING, ClusteringModel.ModelClass.CENTER_BASED, rows, ModelUtil.createMiningSchema(schema.getLabel()), comparisonMeasure, ClusteringModelUtil.createClusteringFields(schema.getFeatures()), clusters)
		.setOutput(ClusteringModelUtil.createOutput(FieldName.create("cluster"), DataType.DOUBLE, clusters));

	return clusteringModel;
}
 
開發者ID:jpmml,項目名稱:jpmml-r,代碼行數:35,代碼來源:KMeansConverter.java


注:本文中的org.jpmml.converter.clustering.ClusteringModelUtil類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。