本文整理匯總了Java中org.grouplens.lenskit.vectors.ImmutableSparseVector類的典型用法代碼示例。如果您正苦於以下問題:Java ImmutableSparseVector類的具體用法?Java ImmutableSparseVector怎麽用?Java ImmutableSparseVector使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
ImmutableSparseVector類屬於org.grouplens.lenskit.vectors包,在下文中一共展示了ImmutableSparseVector類的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: get
import org.grouplens.lenskit.vectors.ImmutableSparseVector; //導入依賴的package包/類
@Override
public SimpleItemItemModel get() {
// Get the transposed rating matrix
// This gives us a map of item IDs to those items' rating vectors
Map<Long, ImmutableSparseVector> itemVectors = getItemVectors();
// Get all items - you might find this useful
LongSortedSet items = LongUtils.packedSet(itemVectors.keySet());
// Map items to vectors of item similarities
Map<Long,MutableSparseVector> itemSimilarities = new HashMap<Long, MutableSparseVector>();
// TODO Compute the similarities between each pair of items
// It will need to be in a map of longs to lists of Scored IDs to store in the model
return new SimpleItemItemModel(Collections.EMPTY_MAP);
}
開發者ID:4DD8A19D69F5324F9D49D17EF78BBBCC,項目名稱:Introd_uction_to_Recom_mander_S_ystem,代碼行數:16,代碼來源:SimpleItemItemModelBuilder.java
示例2: getItemVectors
import org.grouplens.lenskit.vectors.ImmutableSparseVector; //導入依賴的package包/類
/**
* Load the data into memory, indexed by item.
* @return A map from item IDs to item rating vectors. Each vector contains users' ratings for
* the item, keyed by user ID.
*/
public Map<Long,ImmutableSparseVector> getItemVectors() {
// set up storage for building each item's rating vector
LongSet items = itemDao.getItemIds();
// map items to maps from users to ratings
Map<Long,Map<Long,Double>> itemData = new HashMap<Long, Map<Long, Double>>();
for (long item: items) {
itemData.put(item, new HashMap<Long, Double>());
}
// itemData should now contain a map to accumulate the ratings of each item
// stream over all user events
Cursor<UserHistory<Event>> stream = userEventDao.streamEventsByUser();
try {
for (UserHistory<Event> evt: stream) {
MutableSparseVector vector = RatingVectorUserHistorySummarizer.makeRatingVector(evt).mutableCopy();
// vector is now the user's rating vector
// TODO Normalize this vector and store the ratings in the item data
}
} finally {
stream.close();
}
// This loop converts our temporary item storage to a map of item vectors
Map<Long,ImmutableSparseVector> itemVectors = new HashMap<Long, ImmutableSparseVector>();
for (Map.Entry<Long,Map<Long,Double>> entry: itemData.entrySet()) {
MutableSparseVector vec = MutableSparseVector.create(entry.getValue());
itemVectors.put(entry.getKey(), vec.immutable());
}
return itemVectors;
}
開發者ID:4DD8A19D69F5324F9D49D17EF78BBBCC,項目名稱:Introd_uction_to_Recom_mander_S_ystem,代碼行數:36,代碼來源:SimpleItemItemModelBuilder.java
示例3: getItemVectors
import org.grouplens.lenskit.vectors.ImmutableSparseVector; //導入依賴的package包/類
/**
* Load the data into memory, indexed by item.
* @return A map from item IDs to item rating vectors. Each vector contains users' ratings for
* the item, keyed by user ID.
*/
public Map<Long,ImmutableSparseVector> getItemVectors() {
// set up storage for building each item's rating vector
LongSet items = itemDao.getItemIds();
// map items to maps from users to ratings
Map<Long,Map<Long,Double>> itemData = new HashMap<Long, Map<Long, Double>>();
for (long item: items) {
itemData.put(item, new HashMap<Long, Double>());
}
// itemData should now contain a map to accumulate the ratings of each item
// stream over all user events
Cursor<UserHistory<Event>> stream = userEventDao.streamEventsByUser();
try {
for (UserHistory<Event> evt: stream) {
MutableSparseVector vector = RatingVectorUserHistorySummarizer.makeRatingVector(evt).mutableCopy();
// vector is now the user's rating vector
// Normalize this vector
vector.add(-vector.mean());
// Store the ratings in the item data
for (VectorEntry vectorEntry : vector.fast(VectorEntry.State.EITHER)) {
long itemId = vectorEntry.getKey();
double rating = vectorEntry.getValue();
long userId = evt.getUserId();
itemData.get(itemId).put(userId, rating);
}
}
} finally {
stream.close();
}
// This loop converts our temporary item storage to a map of item vectors
Map<Long,ImmutableSparseVector> itemVectors = new HashMap<Long, ImmutableSparseVector>();
for (Map.Entry<Long,Map<Long,Double>> entry: itemData.entrySet()) {
MutableSparseVector vec = MutableSparseVector.create(entry.getValue());
itemVectors.put(entry.getKey(), vec.immutable());
}
return itemVectors;
}
示例4: getItemVectors
import org.grouplens.lenskit.vectors.ImmutableSparseVector; //導入依賴的package包/類
/**
* Load the data into memory, indexed by item.
* @return A map from item IDs to item rating vectors. Each vector contains users' ratings for
* the item, keyed by user ID.
*/
public Map<Long,ImmutableSparseVector> getItemVectors() {
// set up storage for building each item's rating vector
LongSet items = itemDao.getItemIds();
// map items to maps from users to ratings
Map<Long,Map<Long,Double>> itemData = new HashMap<Long, Map<Long, Double>>();
for (long item: items) {
itemData.put(item, new HashMap<Long, Double>());
}
// itemData should now contain a map to accumulate the ratings of each item
// stream over all user events
Cursor<UserHistory<Event>> stream = userEventDao.streamEventsByUser();
try {
for (UserHistory<Event> evt: stream) {
MutableSparseVector vector = RatingVectorUserHistorySummarizer.makeRatingVector(evt).mutableCopy();
// vector is now the user's rating vector
// Normalizing this vector and store the ratings in the item data
vector.add(-(vector.mean()));
for (VectorEntry e: vector) {
itemData.get(e.getKey()).put(evt.getUserId(), e.getValue());
}
}
} finally {
stream.close();
}
// This loop converts our temporary item storage to a map of item vectors
Map<Long,ImmutableSparseVector> itemVectors = new HashMap<Long, ImmutableSparseVector>();
for (Map.Entry<Long,Map<Long,Double>> entry: itemData.entrySet()) {
MutableSparseVector vec = MutableSparseVector.create(entry.getValue());
itemVectors.put(entry.getKey(), vec.immutable());
}
return itemVectors;
}
開發者ID:rohitsinha54,項目名稱:Coursera-Introduction-to-Recommender-Systems-Programming-Assignment-5,代碼行數:41,代碼來源:SimpleItemItemModelBuilder.java
示例5: get
import org.grouplens.lenskit.vectors.ImmutableSparseVector; //導入依賴的package包/類
@Override
public SimpleItemItemModel get() {
// Get the transposed rating matrix
// This gives us a map of item IDs to those items' rating vectors
Map<Long, ImmutableSparseVector> itemVectors = getItemVectors();
// Get all items - you might find this useful
LongSortedSet items = LongUtils.packedSet(itemVectors.keySet());
// Map items to vectors of item similarities
@SuppressWarnings("unused")
Map<Long,MutableSparseVector> itemSimilarities = new HashMap<Long, MutableSparseVector>();
// Compute the similarities between each pair of items
// It will need to be in a map of longs to lists of Scored IDs to store in the model
Map<Long, List<ScoredId>> neighborhoods = new HashMap<Long, List<ScoredId>>();
// Compute the similarities between each pair of items
CosineVectorSimilarity cosine = new CosineVectorSimilarity();
for(long item : items){
// get this item ratings
ImmutableSparseVector itemRatings = itemVectors.get(item);
// create the accumulator for this item
TopNScoredItemAccumulator accumulator = new TopNScoredItemAccumulator(items.size() - 1);
for(long neighbor : items){
// skip itself
if(item == neighbor) continue;
ImmutableSparseVector neighRatings = itemVectors.get(neighbor);
// cosine similarity
double similarity = cosine.similarity(itemRatings, neighRatings);
//accumulate positive similarities
if(similarity >= 0.0){
accumulator.put(neighbor, similarity);
}
}
//get the final list of sorted neighbors
List<ScoredId> similarities = accumulator.finish();
// update the map of similarity
neighborhoods.put(item, similarities);
}
// It will need to be in a map of longs to lists of Scored IDs to store in the model
return new SimpleItemItemModel(neighborhoods);
}
示例6: get
import org.grouplens.lenskit.vectors.ImmutableSparseVector; //導入依賴的package包/類
@Override
public SimpleItemItemModel get() {
// Get the transposed rating matrix
// This gives us a map of item IDs to those items' rating vectors
Map<Long, ImmutableSparseVector> itemVectors = getItemVectors();
// Get all items - you might find this useful
LongSortedSet items = LongUtils.packedSet(itemVectors.keySet());
// Map items to vectors of item similarities
//Map<Long,MutableSparseVector> itemSimilarities = new HashMap<Long, MutableSparseVector>();
Map<Long, List<ScoredId>> neighborhoods = new HashMap<Long, List<ScoredId>>();
// Computing the similarities between each pair of items
// It will need to be in a map of longs to lists of Scored IDs to store in the model
for(Iterator outerIter = items.iterator(); outerIter.hasNext() ; ) {
Long thisItemId = (Long) outerIter.next();
TopNScoredItemAccumulator accumulator = new TopNScoredItemAccumulator(items.size()-1);
// Calculate similiarity with other item one by one and
for(Iterator innerIter = items.iterator(); innerIter.hasNext() ; ) {
Long nghbrItemId = (Long) innerIter.next();
if(thisItemId.equals(nghbrItemId)) continue;
// cosine similarity
double similarity = new CosineVectorSimilarity().similarity(itemVectors.get(thisItemId),
itemVectors.get(nghbrItemId));
//accumulate
if (similarity > 0) {
accumulator.put(nghbrItemId, similarity);
}
}
//put in the final list of sorted neighbors
List<ScoredId> similarities = accumulator.finish();
neighborhoods.put(thisItemId, similarities);
}
return new SimpleItemItemModel(neighborhoods);
//return new SimpleItemItemModel(Collections.EMPTY_MAP);
}
開發者ID:rohitsinha54,項目名稱:Coursera-Introduction-to-Recommender-Systems-Programming-Assignment-5,代碼行數:42,代碼來源:SimpleItemItemModelBuilder.java