當前位置: 首頁>>代碼示例>>Java>>正文


Java FileLabelAwareIterator類代碼示例

本文整理匯總了Java中org.deeplearning4j.text.documentiterator.FileLabelAwareIterator的典型用法代碼示例。如果您正苦於以下問題:Java FileLabelAwareIterator類的具體用法?Java FileLabelAwareIterator怎麽用?Java FileLabelAwareIterator使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


FileLabelAwareIterator類屬於org.deeplearning4j.text.documentiterator包,在下文中一共展示了FileLabelAwareIterator類的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: makeParagraphVectors

import org.deeplearning4j.text.documentiterator.FileLabelAwareIterator; //導入依賴的package包/類
void makeParagraphVectors() throws Exception {

        // build a iterator for our dataset
        File dir = TYPE_LEARNING_DIR;
        dir.mkdirs();
        iterator = new FileLabelAwareIterator.Builder()
                           .addSourceFolder(new File(dir, "corpus"))
                           .build();

        tokenizerFactory = new DefaultTokenizerFactory();
        tokenizerFactory.setTokenPreProcessor(new CommonPreprocessor());

        // ParagraphVectors training configuration
        paragraphVectors = new ParagraphVectors.Builder()
                                   .learningRate(0.025)
                                   .minLearningRate(0.001)
                                   .batchSize(1000)
                                   .epochs(5)
                                   .iterate(iterator)
                                   .trainWordVectors(true)
                                   .tokenizerFactory(tokenizerFactory)
                                   .build();

        // Start model training
        paragraphVectors.fit();
    }
 
開發者ID:sillelien,項目名稱:dollar,代碼行數:27,代碼來源:ParagraphVectorsClassifierExample.java

示例2: checkUnlabeledData

import org.deeplearning4j.text.documentiterator.FileLabelAwareIterator; //導入依賴的package包/類
void checkUnlabeledData() throws FileNotFoundException {
  /*
  At this point we assume that we have model built and we can check
  which categories our unlabeled document falls into.
  So we'll start loading our unlabeled documents and checking them
 */
    ClassPathResource unClassifiedResource = new ClassPathResource("paravec/unlabeled");
    FileLabelAwareIterator unClassifiedIterator = new FileLabelAwareIterator.Builder()
                                                          .addSourceFolder(unClassifiedResource.getFile())
                                                          .build();

 /*
  Now we'll iterate over unlabeled data, and check which label it could be assigned to
  Please note: for many domains it's normal to have 1 document fall into few labels at once,
  with different "weight" for each.
 */
    MeansBuilder meansBuilder = new MeansBuilder(
                                                        (InMemoryLookupTable<VocabWord>) paragraphVectors.getLookupTable(),
                                                        tokenizerFactory);
    LabelSeeker seeker = new LabelSeeker(iterator.getLabelsSource().getLabels(),
                                         (InMemoryLookupTable<VocabWord>) paragraphVectors.getLookupTable());

    while (unClassifiedIterator.hasNextDocument()) {
        LabelledDocument document = unClassifiedIterator.nextDocument();
        INDArray documentAsCentroid = meansBuilder.documentAsVector(document);
        List<Pair<String, Double>> scores = seeker.getScores(documentAsCentroid);

     /*
      please note, document.getLabel() is used just to show which document we're looking at now,
      as a substitute for printing out the whole document name.
      So, labels on these two documents are used like titles,
      just to visualize our classification done properly
     */
        log.info("Document '" + document.getLabel() + "' falls into the following categories: ");
        for (Pair<String, Double> score : scores) {
            log.info("        " + score.getFirst() + ": " + score.getSecond());
        }
    }

}
 
開發者ID:sillelien,項目名稱:dollar,代碼行數:41,代碼來源:ParagraphVectorsClassifierExample.java

示例3: checkUnlabelledData

import org.deeplearning4j.text.documentiterator.FileLabelAwareIterator; //導入依賴的package包/類
private void checkUnlabelledData(Word2Vec paragraphVectors, LabelAwareIterator iterator, TokenizerFactory tokenizerFactory) throws FileNotFoundException {
  ClassPathResource unClassifiedResource = new ClassPathResource("papers/unlabeled");
  FileLabelAwareIterator unClassifiedIterator = new FileLabelAwareIterator.Builder()
      .addSourceFolder(unClassifiedResource.getFile())
      .build();

  MeansBuilder meansBuilder = new MeansBuilder(
      (InMemoryLookupTable<VocabWord>) paragraphVectors.getLookupTable(),
      tokenizerFactory);
  LabelSeeker seeker = new LabelSeeker(iterator.getLabelsSource().getLabels(),
      (InMemoryLookupTable<VocabWord>) paragraphVectors.getLookupTable());

  System.out.println(paragraphVectors + " classification results");
  double cc = 0;
  double size = 0;
  while (unClassifiedIterator.hasNextDocument()) {
    LabelledDocument document = unClassifiedIterator.nextDocument();
    INDArray documentAsCentroid = meansBuilder.documentAsVector(document);
    List<Pair<String, Double>> scores = seeker.getScores(documentAsCentroid);

    double max = -Integer.MAX_VALUE;
    String cat = null;
    for (Pair<String, Double> p : scores) {
      if (p.getSecond() > max) {
        max = p.getSecond();
        cat = p.getFirst();
      }
    }
    if (document.getLabels().contains(cat)) {
      cc++;
    }
    size++;

  }
  System.out.println("acc:" + (cc / size));

}
 
開發者ID:tteofili,項目名稱:par2hier,代碼行數:38,代碼來源:Par2HierClassificationTest.java

示例4: testConsumeOnNonEqualVocabs

import org.deeplearning4j.text.documentiterator.FileLabelAwareIterator; //導入依賴的package包/類
@Test
public void testConsumeOnNonEqualVocabs() throws Exception {
    TokenizerFactory t = new DefaultTokenizerFactory();
    t.setTokenPreProcessor(new CommonPreprocessor());

    AbstractCache<VocabWord> cacheSource = new AbstractCache.Builder<VocabWord>().build();


    ClassPathResource resource = new ClassPathResource("big/raw_sentences.txt");

    BasicLineIterator underlyingIterator = new BasicLineIterator(resource.getFile());


    SentenceTransformer transformer =
                    new SentenceTransformer.Builder().iterator(underlyingIterator).tokenizerFactory(t).build();

    AbstractSequenceIterator<VocabWord> sequenceIterator =
                    new AbstractSequenceIterator.Builder<>(transformer).build();

    VocabConstructor<VocabWord> vocabConstructor = new VocabConstructor.Builder<VocabWord>()
                    .addSource(sequenceIterator, 1).setTargetVocabCache(cacheSource).build();

    vocabConstructor.buildJointVocabulary(false, true);

    assertEquals(244, cacheSource.numWords());

    InMemoryLookupTable<VocabWord> mem1 =
                    (InMemoryLookupTable<VocabWord>) new InMemoryLookupTable.Builder<VocabWord>().vectorLength(100)
                                    .cache(cacheSource).build();

    mem1.resetWeights(true);



    AbstractCache<VocabWord> cacheTarget = new AbstractCache.Builder<VocabWord>().build();



    FileLabelAwareIterator labelAwareIterator = new FileLabelAwareIterator.Builder()
                    .addSourceFolder(new ClassPathResource("/paravec/labeled").getFile()).build();

    transformer = new SentenceTransformer.Builder().iterator(labelAwareIterator).tokenizerFactory(t).build();

    sequenceIterator = new AbstractSequenceIterator.Builder<>(transformer).build();

    VocabConstructor<VocabWord> vocabTransfer = new VocabConstructor.Builder<VocabWord>()
                    .addSource(sequenceIterator, 1).setTargetVocabCache(cacheTarget).build();

    vocabTransfer.buildMergedVocabulary(cacheSource, true);

    // those +3 go for 3 additional entries in target VocabCache: labels
    assertEquals(cacheSource.numWords() + 3, cacheTarget.numWords());


    InMemoryLookupTable<VocabWord> mem2 =
                    (InMemoryLookupTable<VocabWord>) new InMemoryLookupTable.Builder<VocabWord>().vectorLength(100)
                                    .cache(cacheTarget).seed(18).build();

    mem2.resetWeights(true);

    assertNotEquals(mem1.vector("day"), mem2.vector("day"));

    mem2.consume(mem1);

    assertEquals(mem1.vector("day"), mem2.vector("day"));

    assertTrue(mem1.syn0.rows() < mem2.syn0.rows());

    assertEquals(mem1.syn0.rows() + 3, mem2.syn0.rows());
}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:71,代碼來源:InMemoryLookupTableTest.java

示例5: testParagraphVectorsReducedLabels1

import org.deeplearning4j.text.documentiterator.FileLabelAwareIterator; //導入依賴的package包/類
/**
 * This test is not indicative.
 * there's no need in this test within travis, use it manually only for problems detection
 *
 * @throws Exception
 */
@Test
@Ignore
public void testParagraphVectorsReducedLabels1() throws Exception {
    ClassPathResource resource = new ClassPathResource("/labeled");
    File file = resource.getFile();

    LabelAwareIterator iter = new FileLabelAwareIterator.Builder().addSourceFolder(file).build();

    TokenizerFactory t = new DefaultTokenizerFactory();

    /**
     * Please note: text corpus is REALLY small, and some kind of "results" could be received with HIGH epochs number, like 30.
     * But there's no reason to keep at that high
     */

    ParagraphVectors vec = new ParagraphVectors.Builder().minWordFrequency(1).epochs(3).layerSize(100)
                    .stopWords(new ArrayList<String>()).windowSize(5).iterate(iter).tokenizerFactory(t).build();

    vec.fit();

    //WordVectorSerializer.writeWordVectors(vec, "vectors.txt");

    INDArray w1 = vec.lookupTable().vector("I");
    INDArray w2 = vec.lookupTable().vector("am");
    INDArray w3 = vec.lookupTable().vector("sad.");

    INDArray words = Nd4j.create(3, vec.lookupTable().layerSize());

    words.putRow(0, w1);
    words.putRow(1, w2);
    words.putRow(2, w3);


    INDArray mean = words.isMatrix() ? words.mean(0) : words;

    log.info("Mean" + Arrays.toString(mean.dup().data().asDouble()));
    log.info("Array" + Arrays.toString(vec.lookupTable().vector("negative").dup().data().asDouble()));

    double simN = Transforms.cosineSim(mean, vec.lookupTable().vector("negative"));
    log.info("Similarity negative: " + simN);


    double simP = Transforms.cosineSim(mean, vec.lookupTable().vector("neutral"));
    log.info("Similarity neutral: " + simP);

    double simV = Transforms.cosineSim(mean, vec.lookupTable().vector("positive"));
    log.info("Similarity positive: " + simV);
}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:55,代碼來源:ParagraphVectorsTest.java

示例6: testMergedVocabWithLabels1

import org.deeplearning4j.text.documentiterator.FileLabelAwareIterator; //導入依賴的package包/類
@Test
public void testMergedVocabWithLabels1() throws Exception {
    AbstractCache<VocabWord> cacheSource = new AbstractCache.Builder<VocabWord>().build();

    AbstractCache<VocabWord> cacheTarget = new AbstractCache.Builder<VocabWord>().build();

    ClassPathResource resource = new ClassPathResource("big/raw_sentences.txt");

    BasicLineIterator underlyingIterator = new BasicLineIterator(resource.getFile());


    SentenceTransformer transformer =
                    new SentenceTransformer.Builder().iterator(underlyingIterator).tokenizerFactory(t).build();

    AbstractSequenceIterator<VocabWord> sequenceIterator =
                    new AbstractSequenceIterator.Builder<>(transformer).build();

    VocabConstructor<VocabWord> vocabConstructor = new VocabConstructor.Builder<VocabWord>()
                    .addSource(sequenceIterator, 1).setTargetVocabCache(cacheSource).build();

    vocabConstructor.buildJointVocabulary(false, true);

    int sourceSize = cacheSource.numWords();
    log.info("Source Vocab size: " + sourceSize);

    FileLabelAwareIterator labelAwareIterator = new FileLabelAwareIterator.Builder()
                    .addSourceFolder(new ClassPathResource("/paravec/labeled").getFile()).build();

    transformer = new SentenceTransformer.Builder().iterator(labelAwareIterator).tokenizerFactory(t).build();

    sequenceIterator = new AbstractSequenceIterator.Builder<>(transformer).build();

    VocabConstructor<VocabWord> vocabTransfer = new VocabConstructor.Builder<VocabWord>()
                    .addSource(sequenceIterator, 1).setTargetVocabCache(cacheTarget).build();

    vocabTransfer.buildMergedVocabulary(cacheSource, true);

    // those +3 go for 3 additional entries in target VocabCache: labels
    assertEquals(sourceSize + 3, cacheTarget.numWords());

    // now we check index equality for transferred elements
    assertEquals(cacheSource.wordAtIndex(17), cacheTarget.wordAtIndex(17));
    assertEquals(cacheSource.wordAtIndex(45), cacheTarget.wordAtIndex(45));
    assertEquals(cacheSource.wordAtIndex(89), cacheTarget.wordAtIndex(89));

    // we check that newly added labels have indexes beyond the VocabCache index space
    // please note, we need >= since the indexes are zero-based, and sourceSize is not
    assertTrue(cacheTarget.indexOf("Zfinance") > sourceSize - 1);
    assertTrue(cacheTarget.indexOf("Zscience") > sourceSize - 1);
    assertTrue(cacheTarget.indexOf("Zhealth") > sourceSize - 1);
}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:52,代碼來源:VocabConstructorTest.java


注:本文中的org.deeplearning4j.text.documentiterator.FileLabelAwareIterator類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。