本文整理匯總了Java中org.deeplearning4j.nn.conf.layers.PoolingType類的典型用法代碼示例。如果您正苦於以下問題:Java PoolingType類的具體用法?Java PoolingType怎麽用?Java PoolingType使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
PoolingType類屬於org.deeplearning4j.nn.conf.layers包,在下文中一共展示了PoolingType類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: mapPoolingType
import org.deeplearning4j.nn.conf.layers.PoolingType; //導入依賴的package包/類
/**
* Map Keras pooling layers to DL4J pooling types.
*
* @param className
* @return
* @throws UnsupportedKerasConfigurationException
*/
public static PoolingType mapPoolingType(String className, KerasLayerConfiguration conf)
throws UnsupportedKerasConfigurationException {
PoolingType poolingType;
if (className.equals(conf.getLAYER_CLASS_NAME_MAX_POOLING_2D()) ||
className.equals(conf.getLAYER_CLASS_NAME_MAX_POOLING_1D()) ||
className.equals(conf.getLAYER_CLASS_NAME_GLOBAL_MAX_POOLING_1D()) ||
className.equals(conf.getLAYER_CLASS_NAME_GLOBAL_MAX_POOLING_2D())) {
poolingType = PoolingType.MAX;
} else if (className.equals(conf.getLAYER_CLASS_NAME_AVERAGE_POOLING_2D()) ||
className.equals(conf.getLAYER_CLASS_NAME_AVERAGE_POOLING_1D()) ||
className.equals(conf.getLAYER_CLASS_NAME_GLOBAL_AVERAGE_POOLING_1D()) ||
className.equals(conf.getLAYER_CLASS_NAME_GLOBAL_AVERAGE_POOLING_2D())) {
poolingType = PoolingType.AVG;
} else {
throw new UnsupportedKerasConfigurationException("Unsupported Keras pooling layer " + className);
}
return poolingType;
}
示例2: use
import org.deeplearning4j.nn.conf.layers.PoolingType; //導入依賴的package包/類
@OptionMetadata(
displayName = "pooling type",
description = "The type of pooling to use (default = MAX; options: MAX, AVG, SUM, NONE).",
commandLineParamName = "poolingType",
commandLineParamSynopsis = "-poolingType <string>",
displayOrder = 10
)
@Override
public PoolingType getPoolingType() {
return super.getPoolingType();
}
示例3: testSubsamplingLayer
import org.deeplearning4j.nn.conf.layers.PoolingType; //導入依賴的package包/類
/**
* Test subsampling layer.
*
* @throws Exception
*/
@Test
public void testSubsamplingLayer() throws Exception {
// CLF
Dl4jMlpClassifier clf = new Dl4jMlpClassifier();
clf.setSeed(1);
// Data
Instances data = DatasetLoader.loadMiniMnistMeta();
data.setClassIndex(data.numAttributes() - 1);
final ImageInstanceIterator imgIter = DatasetLoader.loadMiniMnistImageIterator();
clf.setInstanceIterator(imgIter);
SubsamplingLayer pool = new SubsamplingLayer();
pool.setKernelSizeX(2);
pool.setKernelSizeY(2);
pool.setPoolingType(PoolingType.MAX);
OutputLayer outputLayer = new OutputLayer();
outputLayer.setActivationFn(Activation.SOFTMAX.getActivationFunction());
outputLayer.setWeightInit(WeightInit.XAVIER);
NeuralNetConfiguration nnc = new NeuralNetConfiguration();
nnc.setOptimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT);
clf.setNeuralNetConfiguration(nnc);
clf.setLayers(pool, outputLayer);
clf.setNumEpochs(1);
clf.buildClassifier(data);
final double[][] res = clf.distributionsForInstances(data);
Assert.assertEquals(DatasetLoader.NUM_INSTANCES_MNIST, res.length);
Assert.assertEquals(DatasetLoader.NUM_CLASSES_MNIST, res[0].length);
}
示例4: buildCNNGraph
import org.deeplearning4j.nn.conf.layers.PoolingType; //導入依賴的package包/類
public static ComputationGraph buildCNNGraph (int vectorSize, int cnnLayerFeatureMaps, PoolingType globalPoolingType) {
// Set up the network configuration. Note that we have multiple convolution layers, each wih filter
// widths of 3, 4 and 5 as per Kim (2014) paper.
ComputationGraphConfiguration config = new NeuralNetConfiguration.Builder()
.weightInit(WeightInit.RELU)
.activation(Activation.LEAKYRELU)
.updater(Updater.ADAM)
.convolutionMode(ConvolutionMode.Same) //This is important so we can 'stack' the results later
.regularization(true).l2(0.0001)
.learningRate(0.01)
.graphBuilder()
.addInputs("input")
.addLayer("cnn3", new ConvolutionLayer.Builder()
.kernelSize(3, vectorSize)
.stride(1, vectorSize)
.nIn(1)
.nOut(cnnLayerFeatureMaps)
.build(), "input")
.addLayer("cnn4", new ConvolutionLayer.Builder()
.kernelSize(4, vectorSize)
.stride(1, vectorSize)
.nIn(1)
.nOut(cnnLayerFeatureMaps)
.build(), "input")
.addLayer("cnn5", new ConvolutionLayer.Builder()
.kernelSize(5, vectorSize)
.stride(1, vectorSize)
.nIn(1)
.nOut(cnnLayerFeatureMaps)
.build(), "input")
//Perform depth concatenation
.addVertex("merge", new MergeVertex(), "cnn3", "cnn4", "cnn5")
.addLayer("globalPool", new GlobalPoolingLayer.Builder()
.poolingType(globalPoolingType)
.build(), "merge")
.addLayer("out", new OutputLayer.Builder()
.lossFunction(LossFunctions.LossFunction.MCXENT)
.activation(Activation.SOFTMAX)
.nIn(3 * cnnLayerFeatureMaps)
.nOut(2) //2 classes: positive or negative
.build(), "globalPool")
.setOutputs("out")
.build();
ComputationGraph net = new ComputationGraph(config);
net.init();
return net;
}
示例5: main
import org.deeplearning4j.nn.conf.layers.PoolingType; //導入依賴的package包/類
public static void main (String[] args) throws IOException {
log.info("download and extract data...");
CNNSentenceClassification.aclImdbDownloader(DATA_URL, DATA_PATH);
// basic configuration
int batchSize = 32;
int vectorSize = 300; //Size of the word vectors. 300 in the Google News model
int nEpochs = 1; //Number of epochs (full passes of training data) to train on
int truncateReviewsToLength = 256; //Truncate reviews with length (# words) greater than this
int cnnLayerFeatureMaps = 100; //Number of feature maps / channels / depth for each CNN layer
PoolingType globalPoolingType = PoolingType.MAX;
Random rng = new Random(12345); //For shuffling repeatability
log.info("construct cnn model...");
ComputationGraph net = CNNSentenceClassification.buildCNNGraph(vectorSize, cnnLayerFeatureMaps, globalPoolingType);
log.info("number of parameters by layer:");
for (Layer l : net.getLayers()) {
log.info("\t" + l.conf().getLayer().getLayerName() + "\t" + l.numParams());
}
// Load word vectors and get the DataSetIterators for training and testing
log.info("loading word vectors and creating DataSetIterators...");
WordVectors wordVectors = WordVectorSerializer.loadStaticModel(new File(WORD_VECTORS_PATH));
DataSetIterator trainIter = CNNSentenceClassification.getDataSetIterator(DATA_PATH, true, wordVectors, batchSize,
truncateReviewsToLength, rng);
DataSetIterator testIter = CNNSentenceClassification.getDataSetIterator(DATA_PATH, false, wordVectors, batchSize,
truncateReviewsToLength, rng);
log.info("starting training...");
for (int i = 0; i < nEpochs; i++) {
net.fit(trainIter);
log.info("Epoch " + i + " complete. Starting evaluation:");
//Run evaluation. This is on 25k reviews, so can take some time
Evaluation evaluation = net.evaluate(testIter);
log.info(evaluation.stats());
}
// after training: load a single sentence and generate a prediction
String pathFirstNegativeFile = FilenameUtils.concat(DATA_PATH, "aclImdb/test/neg/0_2.txt");
String contentsFirstNegative = FileUtils.readFileToString(new File(pathFirstNegativeFile));
INDArray featuresFirstNegative = ((CnnSentenceDataSetIterator)testIter).loadSingleSentence(contentsFirstNegative);
INDArray predictionsFirstNegative = net.outputSingle(featuresFirstNegative);
List<String> labels = testIter.getLabels();
log.info("\n\nPredictions for first negative review:");
for( int i=0; i<labels.size(); i++ ){
log.info("P(" + labels.get(i) + ") = " + predictionsFirstNegative.getDouble(i));
}
}
示例6: GlobalPoolingLayer
import org.deeplearning4j.nn.conf.layers.PoolingType; //導入依賴的package包/類
/** Constructor for setting some defaults. */
public GlobalPoolingLayer() {
setLayerName("GlobalPooling layer");
setPoolingType(PoolingType.MAX);
setPnorm(2);
}
示例7: setPoolingType
import org.deeplearning4j.nn.conf.layers.PoolingType; //導入依賴的package包/類
@Override
public void setPoolingType(PoolingType poolingType) {
super.setPoolingType(poolingType);
}
示例8: testMinimalMnistConvNet
import org.deeplearning4j.nn.conf.layers.PoolingType; //導入依賴的package包/類
/**
* Test minimal mnist conv net.
*
* @throws Exception IO error.
*/
@Test
public void testMinimalMnistConvNet() throws Exception {
clf.setInstanceIterator(idiMnist);
int[] threeByThree = {3, 3};
int[] twoByTwo = {2, 2};
int[] oneByOne = {1, 1};
List<Layer> layers = new ArrayList<>();
ConvolutionLayer convLayer1 = new ConvolutionLayer();
convLayer1.setKernelSize(threeByThree);
convLayer1.setStride(oneByOne);
convLayer1.setNOut(8);
convLayer1.setLayerName("Conv-layer 1");
layers.add(convLayer1);
SubsamplingLayer poolLayer1 = new SubsamplingLayer();
poolLayer1.setPoolingType(PoolingType.MAX);
poolLayer1.setKernelSize(twoByTwo);
poolLayer1.setLayerName("Pool1");
layers.add(poolLayer1);
ConvolutionLayer convLayer3 = new ConvolutionLayer();
convLayer3.setNOut(8);
convLayer3.setKernelSize(threeByThree);
layers.add(convLayer3);
BatchNormalization bn4 = new BatchNormalization();
bn4.setActivationFunction(new ActivationReLU());
layers.add(bn4);
SubsamplingLayer poolLayer2 = new SubsamplingLayer();
poolLayer2.setPoolingType(PoolingType.MAX);
poolLayer2.setKernelSize(twoByTwo);
layers.add(poolLayer2);
OutputLayer outputLayer = new OutputLayer();
outputLayer.setActivationFn(new ActivationSoftmax());
outputLayer.setLossFn(new LossMCXENT());
layers.add(outputLayer);
NeuralNetConfiguration nnc = new NeuralNetConfiguration();
nnc.setOptimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT);
nnc.setUseRegularization(true);
clf.setNeuralNetConfiguration(nnc);
Layer[] ls = new Layer[layers.size()];
layers.toArray(ls);
clf.setLayers(ls);
TestUtil.holdout(clf, dataMnist);
}
示例9: backpropGradient
import org.deeplearning4j.nn.conf.layers.PoolingType; //導入依賴的package包/類
Pair<Gradient, INDArray> backpropGradient(INDArray input, INDArray epsilon, int[] kernel, int[] strides, int[] pad,
PoolingType poolingType, ConvolutionMode convolutionMode, int[] dilation);
示例10: activate
import org.deeplearning4j.nn.conf.layers.PoolingType; //導入依賴的package包/類
INDArray activate(INDArray input, boolean training, int[] kernel, int[] strides, int[] pad, PoolingType poolingType,
ConvolutionMode convolutionMode, int[] dilation);
示例11: maskedPoolingTimeSeries
import org.deeplearning4j.nn.conf.layers.PoolingType; //導入依賴的package包/類
public static INDArray maskedPoolingTimeSeries(PoolingType poolingType, INDArray toReduce, INDArray mask,
int pnorm) {
if (toReduce.rank() != 3) {
throw new IllegalArgumentException("Expect rank 3 array: got " + toReduce.rank());
}
if (mask.rank() != 2) {
throw new IllegalArgumentException("Expect rank 2 array for mask: got " + mask.rank());
}
//Sum pooling: easy. Multiply by mask, then sum as normal
//Average pooling: as above, but do a broadcast element-wise divi by mask.sum(1)
//Max pooling: set to -inf if mask is 0, then do max as normal
switch (poolingType) {
case MAX:
//TODO This is ugly - replace it with something better... Need something like a Broadcast CAS op
INDArray negInfMask = Transforms.not(mask);
BooleanIndexing.replaceWhere(negInfMask, Double.NEGATIVE_INFINITY, Conditions.equals(1.0));
INDArray withInf = Nd4j.createUninitialized(toReduce.shape());
Nd4j.getExecutioner().exec(new BroadcastAddOp(toReduce, negInfMask, withInf, 0, 2));
//At this point: all the masked out steps have value -inf, hence can't be the output of the MAX op
return withInf.max(2);
case AVG:
case SUM:
INDArray masked = Nd4j.createUninitialized(toReduce.shape());
Nd4j.getExecutioner().exec(new BroadcastMulOp(toReduce, mask, masked, 0, 2));
INDArray summed = masked.sum(2);
if (poolingType == PoolingType.SUM) {
return summed;
}
INDArray maskCounts = mask.sum(1);
summed.diviColumnVector(maskCounts);
return summed;
case PNORM:
//Similar to average and sum pooling: there's no N term here, so we can just set the masked values to 0
INDArray masked2 = Nd4j.createUninitialized(toReduce.shape());
Nd4j.getExecutioner().exec(new BroadcastMulOp(toReduce, mask, masked2, 0, 2));
INDArray abs = Transforms.abs(masked2, true);
Transforms.pow(abs, pnorm, false);
INDArray pNorm = abs.sum(2);
return Transforms.pow(pNorm, 1.0 / pnorm);
default:
throw new UnsupportedOperationException("Unknown or not supported pooling type: " + poolingType);
}
}
示例12: maskedPoolingEpsilonTimeSeries
import org.deeplearning4j.nn.conf.layers.PoolingType; //導入依賴的package包/類
public static INDArray maskedPoolingEpsilonTimeSeries(PoolingType poolingType, INDArray input, INDArray mask,
INDArray epsilon2d, int pnorm) {
if (input.rank() != 3) {
throw new IllegalArgumentException("Expect rank 3 input activation array: got " + input.rank());
}
if (mask.rank() != 2) {
throw new IllegalArgumentException("Expect rank 2 array for mask: got " + mask.rank());
}
if (epsilon2d.rank() != 2) {
throw new IllegalArgumentException("Expected rank 2 array for errors: got " + epsilon2d.rank());
}
//Mask: [minibatch, tsLength]
//Epsilon: [minibatch, vectorSize]
switch (poolingType) {
case MAX:
//TODO This is ugly - replace it with something better... Need something like a Broadcast CAS op
INDArray negInfMask = Transforms.not(mask);
BooleanIndexing.replaceWhere(negInfMask, Double.NEGATIVE_INFINITY, Conditions.equals(1.0));
INDArray withInf = Nd4j.createUninitialized(input.shape());
Nd4j.getExecutioner().exec(new BroadcastAddOp(input, negInfMask, withInf, 0, 2));
//At this point: all the masked out steps have value -inf, hence can't be the output of the MAX op
INDArray isMax = Nd4j.getExecutioner().execAndReturn(new IsMax(withInf, 2));
return Nd4j.getExecutioner().execAndReturn(new BroadcastMulOp(isMax, epsilon2d, isMax, 0, 1));
case AVG:
case SUM:
//if out = sum(in,dims) then dL/dIn = dL/dOut -> duplicate to each step and mask
//if out = avg(in,dims) then dL/dIn = 1/N * dL/dOut
//With masking: N differs for different time series
INDArray out = Nd4j.createUninitialized(input.shape(), 'f');
//Broadcast copy op, then divide and mask to 0 as appropriate
Nd4j.getExecutioner().exec(new BroadcastCopyOp(out, epsilon2d, out, 0, 1));
Nd4j.getExecutioner().exec(new BroadcastMulOp(out, mask, out, 0, 2));
if (poolingType == PoolingType.SUM) {
return out;
}
INDArray nEachTimeSeries = mask.sum(1); //[minibatchSize,tsLength] -> [minibatchSize,1]
Nd4j.getExecutioner().exec(new BroadcastDivOp(out, nEachTimeSeries, out, 0));
return out;
case PNORM:
//Similar to average and sum pooling: there's no N term here, so we can just set the masked values to 0
INDArray masked2 = Nd4j.createUninitialized(input.shape());
Nd4j.getExecutioner().exec(new BroadcastMulOp(input, mask, masked2, 0, 2));
INDArray abs = Transforms.abs(masked2, true);
Transforms.pow(abs, pnorm, false);
INDArray pNorm = Transforms.pow(abs.sum(2), 1.0 / pnorm);
INDArray numerator;
if (pnorm == 2) {
numerator = input.dup();
} else {
INDArray absp2 = Transforms.pow(Transforms.abs(input, true), pnorm - 2, false);
numerator = input.mul(absp2);
}
INDArray denom = Transforms.pow(pNorm, pnorm - 1, false);
denom.rdivi(epsilon2d);
Nd4j.getExecutioner().execAndReturn(new BroadcastMulOp(numerator, denom, numerator, 0, 1));
Nd4j.getExecutioner().exec(new BroadcastMulOp(numerator, mask, numerator, 0, 2)); //Apply mask
return numerator;
default:
throw new UnsupportedOperationException("Unknown or not supported pooling type: " + poolingType);
}
}
示例13: maskedPoolingConvolution
import org.deeplearning4j.nn.conf.layers.PoolingType; //導入依賴的package包/類
public static INDArray maskedPoolingConvolution(PoolingType poolingType, INDArray toReduce, INDArray mask,
boolean alongHeight, int pnorm) {
// [minibatch, depth, h=1, w=X] or [minibatch, depth, h=X, w=1] data
// with a mask array of shape [minibatch, X]
//If masking along height: broadcast dimensions are [0,2]
//If masking along width: broadcast dimensions are [0,3]
int[] dimensions = (alongHeight ? CNN_DIM_MASK_H : CNN_DIM_MASK_W);
switch (poolingType) {
case MAX:
//TODO This is ugly - replace it with something better... Need something like a Broadcast CAS op
INDArray negInfMask = Transforms.not(mask);
BooleanIndexing.replaceWhere(negInfMask, Double.NEGATIVE_INFINITY, Conditions.equals(1.0));
INDArray withInf = Nd4j.createUninitialized(toReduce.shape());
Nd4j.getExecutioner().exec(new BroadcastAddOp(toReduce, negInfMask, withInf, dimensions));
//At this point: all the masked out steps have value -inf, hence can't be the output of the MAX op
return withInf.max(2, 3);
case AVG:
case SUM:
INDArray masked = Nd4j.createUninitialized(toReduce.shape());
Nd4j.getExecutioner().exec(new BroadcastMulOp(toReduce, mask, masked, dimensions));
INDArray summed = masked.sum(2, 3);
if (poolingType == PoolingType.SUM) {
return summed;
}
INDArray maskCounts = mask.sum(1);
summed.diviColumnVector(maskCounts);
return summed;
case PNORM:
//Similar to average and sum pooling: there's no N term here, so we can just set the masked values to 0
INDArray masked2 = Nd4j.createUninitialized(toReduce.shape());
Nd4j.getExecutioner().exec(new BroadcastMulOp(toReduce, mask, masked2, dimensions));
INDArray abs = Transforms.abs(masked2, true);
Transforms.pow(abs, pnorm, false);
INDArray pNorm = abs.sum(2, 3);
return Transforms.pow(pNorm, 1.0 / pnorm);
default:
throw new UnsupportedOperationException("Unknown or not supported pooling type: " + poolingType);
}
}
示例14: maskedPoolingEpsilonCnn
import org.deeplearning4j.nn.conf.layers.PoolingType; //導入依賴的package包/類
public static INDArray maskedPoolingEpsilonCnn(PoolingType poolingType, INDArray input, INDArray mask,
INDArray epsilon2d, boolean alongHeight, int pnorm) {
// [minibatch, depth, h=1, w=X] or [minibatch, depth, h=X, w=1] data
// with a mask array of shape [minibatch, X]
//If masking along height: broadcast dimensions are [0,2]
//If masking along width: broadcast dimensions are [0,3]
int[] dimensions = (alongHeight ? CNN_DIM_MASK_H : CNN_DIM_MASK_W);
switch (poolingType) {
case MAX:
//TODO This is ugly - replace it with something better... Need something like a Broadcast CAS op
INDArray negInfMask = Transforms.not(mask);
BooleanIndexing.replaceWhere(negInfMask, Double.NEGATIVE_INFINITY, Conditions.equals(1.0));
INDArray withInf = Nd4j.createUninitialized(input.shape());
Nd4j.getExecutioner().exec(new BroadcastAddOp(input, negInfMask, withInf, dimensions));
//At this point: all the masked out steps have value -inf, hence can't be the output of the MAX op
INDArray isMax = Nd4j.getExecutioner().execAndReturn(new IsMax(withInf, 2, 3));
return Nd4j.getExecutioner().execAndReturn(new BroadcastMulOp(isMax, epsilon2d, isMax, 0, 1));
case AVG:
case SUM:
//if out = sum(in,dims) then dL/dIn = dL/dOut -> duplicate to each step and mask
//if out = avg(in,dims) then dL/dIn = 1/N * dL/dOut
//With masking: N differs for different time series
INDArray out = Nd4j.createUninitialized(input.shape(), 'f');
//Broadcast copy op, then divide and mask to 0 as appropriate
Nd4j.getExecutioner().exec(new BroadcastCopyOp(out, epsilon2d, out, 0, 1));
Nd4j.getExecutioner().exec(new BroadcastMulOp(out, mask, out, dimensions));
if (poolingType == PoolingType.SUM) {
return out;
}
//Note that with CNNs, current design is restricted to [minibatch, depth, 1, W] ot [minibatch, depth, H, 1]
INDArray nEachTimeSeries = mask.sum(1); //[minibatchSize,tsLength] -> [minibatchSize,1]
Nd4j.getExecutioner().exec(new BroadcastDivOp(out, nEachTimeSeries, out, 0));
return out;
case PNORM:
//Similar to average and sum pooling: there's no N term here, so we can just set the masked values to 0
INDArray masked2 = Nd4j.createUninitialized(input.shape());
Nd4j.getExecutioner().exec(new BroadcastMulOp(input, mask, masked2, dimensions));
INDArray abs = Transforms.abs(masked2, true);
Transforms.pow(abs, pnorm, false);
INDArray pNorm = Transforms.pow(abs.sum(2, 3), 1.0 / pnorm);
INDArray numerator;
if (pnorm == 2) {
numerator = input.dup();
} else {
INDArray absp2 = Transforms.pow(Transforms.abs(input, true), pnorm - 2, false);
numerator = input.mul(absp2);
}
INDArray denom = Transforms.pow(pNorm, pnorm - 1, false);
denom.rdivi(epsilon2d);
Nd4j.getExecutioner().execAndReturn(new BroadcastMulOp(numerator, denom, numerator, 0, 1));
Nd4j.getExecutioner().exec(new BroadcastMulOp(numerator, mask, numerator, dimensions)); //Apply mask
return numerator;
default:
throw new UnsupportedOperationException("Unknown or not supported pooling type: " + poolingType);
}
}
示例15: testMaskingRnn
import org.deeplearning4j.nn.conf.layers.PoolingType; //導入依賴的package包/類
@Test
public void testMaskingRnn() {
int timeSeriesLength = 5;
int nIn = 5;
int layerSize = 4;
int nOut = 2;
int[] minibatchSizes = new int[] {1, 3};
for (int miniBatchSize : minibatchSizes) {
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.updater(new NoOp()).weightInit(WeightInit.DISTRIBUTION)
.dist(new NormalDistribution(0, 1.0)).seed(12345L).list()
.layer(0, new GravesLSTM.Builder().nIn(nIn).nOut(layerSize).activation(Activation.TANH)
.build())
.layer(1, new org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder()
.poolingType(PoolingType.AVG).build())
.layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.activation(Activation.SOFTMAX).nIn(layerSize).nOut(nOut).build())
.pretrain(false).backprop(true).build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
Random r = new Random(12345L);
INDArray input = Nd4j.rand(new int[] {miniBatchSize, nIn, timeSeriesLength}).subi(0.5);
INDArray mask;
if (miniBatchSize == 1) {
mask = Nd4j.create(new double[] {1, 1, 1, 1, 0});
} else {
mask = Nd4j.create(new double[][] {{1, 1, 1, 1, 1}, {1, 1, 1, 1, 0}, {1, 1, 1, 0, 0}});
}
INDArray labels = Nd4j.zeros(miniBatchSize, nOut);
for (int i = 0; i < miniBatchSize; i++) {
int idx = r.nextInt(nOut);
labels.putScalar(i, idx, 1.0);
}
net.setLayerMaskArrays(mask, null);
INDArray outputMasked = net.output(input);
net.clearLayerMaskArrays();
for (int i = 0; i < miniBatchSize; i++) {
INDArray maskRow = mask.getRow(i);
int tsLength = maskRow.sumNumber().intValue();
INDArray inputSubset = input.get(NDArrayIndex.interval(i, i, true), NDArrayIndex.all(),
NDArrayIndex.interval(0, tsLength));
INDArray outSubset = net.output(inputSubset);
INDArray outputMaskedSubset = outputMasked.getRow(i);
assertEquals(outSubset, outputMaskedSubset);
}
}
}