當前位置: 首頁>>代碼示例>>Java>>正文


Java AutoEncoder類代碼示例

本文整理匯總了Java中org.deeplearning4j.nn.conf.layers.AutoEncoder的典型用法代碼示例。如果您正苦於以下問題:Java AutoEncoder類的具體用法?Java AutoEncoder怎麽用?Java AutoEncoder使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


AutoEncoder類屬於org.deeplearning4j.nn.conf.layers包,在下文中一共展示了AutoEncoder類的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: getConfiguration

import org.deeplearning4j.nn.conf.layers.AutoEncoder; //導入依賴的package包/類
@Override
   protected MultiLayerConfiguration getConfiguration()
   {
return new NeuralNetConfiguration.Builder().seed(parameters.getSeed())
	.gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue)
	.gradientNormalizationThreshold(1.0).iterations(parameters.getIterations()).momentum(0.5)
	.momentumAfter(Collections.singletonMap(3, 0.9))
	.optimizationAlgo(OptimizationAlgorithm.CONJUGATE_GRADIENT).list(4)
	.layer(0,
		new AutoEncoder.Builder().nIn(parameters.getInputSize()).nOut(500).weightInit(WeightInit.XAVIER)
			.lossFunction(LossFunction.RMSE_XENT).corruptionLevel(0.3).build())
	.layer(1, new AutoEncoder.Builder().nIn(500).nOut(250).weightInit(WeightInit.XAVIER)
		.lossFunction(LossFunction.RMSE_XENT).corruptionLevel(0.3)

		.build())
	.layer(2,
		new AutoEncoder.Builder().nIn(250).nOut(200).weightInit(WeightInit.XAVIER)
			.lossFunction(LossFunction.RMSE_XENT).corruptionLevel(0.3).build())
	.layer(3, new OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD).activation("softmax").nIn(200)
		.nOut(parameters.getOutputSize()).build())
	.pretrain(true).backprop(false).build();
   }
 
開發者ID:amrabed,項目名稱:DL4J,代碼行數:23,代碼來源:StackedAutoEncoderModel.java

示例2: main

import org.deeplearning4j.nn.conf.layers.AutoEncoder; //導入依賴的package包/類
public static void main(String[] args) throws Exception {
     // final int numRows = 28;
     // final int numColumns = 28;
      int outputNum = 10;
int inputNum = 1000;
      int numSamples = 60000;
      int batchSize = 1024;
      int iterations = 10;
      int seed = 123;
      int listenerFreq = batchSize / 5;

      log.info("Load data....");
      DataSetIterator iter = new MnistDataSetIterator(batchSize,numSamples,true);

      log.info("Build model....");
      MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
         .seed(seed)
         .gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue)
         .gradientNormalizationThreshold(1.0)
         .iterations(iterations)
         .momentum(0.5)
         .momentumAfter(Collections.singletonMap(3, 0.9))
         .optimizationAlgo(OptimizationAlgorithm.CONJUGATE_GRADIENT)
         .list()
   .layer(0, new AutoEncoder.Builder()
		   .nIn(inputNum)
		   .nOut(500)
                 .weightInit(WeightInit.XAVIER).lossFunction(LossFunction.RMSE_XENT)
                 .corruptionLevel(0.3)
                 .build())
         .layer(1, new AutoEncoder.Builder()
                .nIn(500)
				.nOut(250)
                      .weightInit(WeightInit.XAVIER).lossFunction(LossFunction.RMSE_XENT)
                      .corruptionLevel(0.3)
                      .build())
         .layer(2, new AutoEncoder.Builder()
                .nIn(250)
				.nOut(125)
                      .weightInit(WeightInit.XAVIER).lossFunction(LossFunction.RMSE_XENT)
                      .corruptionLevel(0.3)
                      .build())
   .layer(3, new AutoEncoder.Builder()
                .nIn(125)
				.nOut(50)
                      .weightInit(WeightInit.XAVIER).lossFunction(LossFunction.RMSE_XENT)
                      .corruptionLevel(0.3)
                      .build())
         .layer(4, new OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD)
                .activation("softmax")
                      .nIn(75)
				.nOut(outputNum)
				.build())
         .pretrain(true)
   .backprop(false)
         .build();

      MultiLayerNetwork model = new MultiLayerNetwork(conf);
      model.init();
      model.setListeners(Arrays.asList((IterationListener) new ScoreIterationListener(listenerFreq)));

      log.info("Train model....");
      model.fit(iter); 

      log.info("Evaluate model....");
      Evaluation eval = new Evaluation(outputNum);

      DataSetIterator testIter = new MnistDataSetIterator(100,10000);
      while(testIter.hasNext()) {
          DataSet testMnist = testIter.next();
          INDArray predict2 = model.output(testMnist.getFeatureMatrix());
          eval.eval(testMnist.getLabels(), predict2);
      }

      log.info(eval.stats());

  }
 
開發者ID:PacktPublishing,項目名稱:Deep-Learning-with-Hadoop,代碼行數:78,代碼來源:StackedAutoEncoder.java

示例3: testAEScoreFunctionSimple

import org.deeplearning4j.nn.conf.layers.AutoEncoder; //導入依賴的package包/類
@Test
public void testAEScoreFunctionSimple() throws Exception {

    for(RegressionEvaluation.Metric metric : new RegressionEvaluation.Metric[]{RegressionEvaluation.Metric.MSE,
            RegressionEvaluation.Metric.MAE}) {
        log.info("Metric: " + metric);

        MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
                .list()
                .layer(new AutoEncoder.Builder().nIn(784).nOut(32).build())
                .pretrain(true).backprop(false)
                .build();

        MultiLayerNetwork net = new MultiLayerNetwork(conf);
        net.init();

        DataSetIterator iter = new MnistDataSetIterator(32, false, 12345);

        List<DataSet> l = new ArrayList<>();
        for( int i=0; i<10; i++ ){
            DataSet ds = iter.next();
            l.add(new DataSet(ds.getFeatures(), ds.getFeatures()));
        }

        iter = new ExistingDataSetIterator(l);

        EarlyStoppingModelSaver<MultiLayerNetwork> saver = new InMemoryModelSaver<>();
        EarlyStoppingConfiguration<MultiLayerNetwork> esConf =
                new EarlyStoppingConfiguration.Builder<MultiLayerNetwork>()
                        .epochTerminationConditions(new MaxEpochsTerminationCondition(5))
                        .iterationTerminationConditions(
                                new MaxTimeIterationTerminationCondition(1, TimeUnit.MINUTES))
                        .scoreCalculator(new AutoencoderScoreCalculator(metric, iter)).modelSaver(saver)
                        .build();

        EarlyStoppingTrainer trainer = new EarlyStoppingTrainer(esConf, net, iter);
        EarlyStoppingResult<MultiLayerNetwork> result = trainer.fit();

        assertNotNull(result.getBestModel());
        assertTrue(result.getBestModelScore() > 0.0);
    }
}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:43,代碼來源:TestEarlyStopping.java

示例4: testAEScoreFunctionSimple

import org.deeplearning4j.nn.conf.layers.AutoEncoder; //導入依賴的package包/類
@Test
public void testAEScoreFunctionSimple() throws Exception {

    for(RegressionEvaluation.Metric metric : new RegressionEvaluation.Metric[]{RegressionEvaluation.Metric.MSE,
            RegressionEvaluation.Metric.MAE}) {
        log.info("Metric: " + metric);

        ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder()
                .graphBuilder()
                .addInputs("in")
                .layer("0", new AutoEncoder.Builder().nIn(784).nOut(32).build(), "in")
                .setOutputs("0")
                .pretrain(true).backprop(false)
                .build();

        ComputationGraph net = new ComputationGraph(conf);
        net.init();

        DataSetIterator iter = new MnistDataSetIterator(32, false, 12345);

        List<DataSet> l = new ArrayList<>();
        for( int i=0; i<10; i++ ){
            DataSet ds = iter.next();
            l.add(new DataSet(ds.getFeatures(), ds.getFeatures()));
        }

        iter = new ExistingDataSetIterator(l);

        EarlyStoppingModelSaver<ComputationGraph> saver = new InMemoryModelSaver<>();
        EarlyStoppingConfiguration<ComputationGraph> esConf =
                new EarlyStoppingConfiguration.Builder<ComputationGraph>()
                        .epochTerminationConditions(new MaxEpochsTerminationCondition(5))
                        .iterationTerminationConditions(
                                new MaxTimeIterationTerminationCondition(1, TimeUnit.MINUTES))
                        .scoreCalculator(new AutoencoderScoreCalculator(metric, iter)).modelSaver(saver)
                        .build();

        EarlyStoppingGraphTrainer trainer = new EarlyStoppingGraphTrainer(esConf, net, iter);
        EarlyStoppingResult<ComputationGraph> result = trainer.fit();

        assertNotNull(result.getBestModel());
        assertTrue(result.getBestModelScore() > 0.0);
    }
}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:45,代碼來源:TestEarlyStoppingCompGraph.java

示例5: testAutoEncoderActivationLayer

import org.deeplearning4j.nn.conf.layers.AutoEncoder; //導入依賴的package包/類
@Test
public void testAutoEncoderActivationLayer() throws Exception {

    int minibatch = 3;
    int nIn = 5;
    int layerSize = 5;
    int nOut = 3;

    INDArray next = Nd4j.rand(new int[] {minibatch, nIn});
    INDArray labels = Nd4j.zeros(minibatch, nOut);
    for (int i = 0; i < minibatch; i++) {
        labels.putScalar(i, i % nOut, 1.0);
    }

    // Run without separate activation layer
    Nd4j.getRandom().setSeed(12345);
    MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
                    .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).seed(123)
                    .list()
                    .layer(0, new AutoEncoder.Builder().nIn(nIn).nOut(layerSize).corruptionLevel(0.0)
                                    .activation(Activation.SIGMOID).build())
                    .layer(1, new org.deeplearning4j.nn.conf.layers.OutputLayer.Builder(
                                    LossFunctions.LossFunction.RECONSTRUCTION_CROSSENTROPY)
                                                    .activation(Activation.SOFTMAX).nIn(layerSize).nOut(nOut)
                                                    .build())
                    .backprop(true).pretrain(false).build();

    MultiLayerNetwork network = new MultiLayerNetwork(conf);
    network.init();
    network.fit(next, labels); //Labels are necessary for this test: layer activation function affect pretraining results, otherwise


    // Run with separate activation layer
    Nd4j.getRandom().setSeed(12345);
    MultiLayerConfiguration conf2 = new NeuralNetConfiguration.Builder()
                    .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).seed(123)
                    .list()
                    .layer(0, new AutoEncoder.Builder().nIn(nIn).nOut(layerSize).corruptionLevel(0.0)
                                    .activation(Activation.IDENTITY).build())
                    .layer(1, new org.deeplearning4j.nn.conf.layers.ActivationLayer.Builder()
                                    .activation(Activation.SIGMOID).build())
                    .layer(2, new org.deeplearning4j.nn.conf.layers.OutputLayer.Builder(
                                    LossFunctions.LossFunction.RECONSTRUCTION_CROSSENTROPY)
                                                    .activation(Activation.SOFTMAX).nIn(layerSize).nOut(nOut)
                                                    .build())
                    .backprop(true).pretrain(false).build();

    MultiLayerNetwork network2 = new MultiLayerNetwork(conf2);
    network2.init();
    network2.fit(next, labels);

    // check parameters
    assertEquals(network.getLayer(0).getParam("W"), network2.getLayer(0).getParam("W"));
    assertEquals(network.getLayer(1).getParam("W"), network2.getLayer(2).getParam("W"));
    assertEquals(network.getLayer(0).getParam("b"), network2.getLayer(0).getParam("b"));
    assertEquals(network.getLayer(1).getParam("b"), network2.getLayer(2).getParam("b"));

    // check activations
    network.init();
    network.setInput(next);
    List<INDArray> activations = network.feedForward(true);

    network2.init();
    network2.setInput(next);
    List<INDArray> activations2 = network2.feedForward(true);

    assertEquals(activations.get(1).reshape(activations2.get(2).shape()), activations2.get(2));
    assertEquals(activations.get(2), activations2.get(3));


}
 
開發者ID:deeplearning4j,項目名稱:deeplearning4j,代碼行數:72,代碼來源:ActivationLayerTest.java


注:本文中的org.deeplearning4j.nn.conf.layers.AutoEncoder類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。