本文整理匯總了Java中org.cleartk.ml.libsvm.LibSvmStringOutcomeDataWriter類的典型用法代碼示例。如果您正苦於以下問題:Java LibSvmStringOutcomeDataWriter類的具體用法?Java LibSvmStringOutcomeDataWriter怎麽用?Java LibSvmStringOutcomeDataWriter使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
LibSvmStringOutcomeDataWriter類屬於org.cleartk.ml.libsvm包,在下文中一共展示了LibSvmStringOutcomeDataWriter類的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: train
import org.cleartk.ml.libsvm.LibSvmStringOutcomeDataWriter; //導入依賴的package包/類
@Override
public void train(CollectionReader collectionReader, File outputDirectory) throws Exception {
AggregateBuilder builder = new AggregateBuilder();
builder.add(UriToDocumentTextAnnotator.getDescription());
builder.add(SentenceAnnotator.getDescription());
builder.add(TokenAnnotator.getDescription());
builder.add(PosTaggerAnnotator.getDescription());
builder.add(DefaultSnowballStemmer.getDescription("English"));
builder.add(AnalysisEngineFactory.createEngineDescription(GoldQuestionCategoryAnnotator.class));
AnalysisEngineDescription documentClassificationAnnotator = AnalysisEngineFactory.createEngineDescription(
QuestionCategoryAnnotator.class, CleartkAnnotator.PARAM_IS_TRAINING, true,
DirectoryDataWriterFactory.PARAM_OUTPUT_DIRECTORY, outputDirectory,
DefaultDataWriterFactory.PARAM_DATA_WRITER_CLASS_NAME, LibSvmStringOutcomeDataWriter.class.getName());
builder.add(documentClassificationAnnotator);
SimplePipeline.runPipeline(collectionReader, builder.createAggregateDescription());
System.err.println("Train model and write model.jar file.");
HideOutput hider = new HideOutput();
Train.main(outputDirectory, this.trainingArguments.toArray(new String[this.trainingArguments.size()]));
hider.restoreOutput();
}
示例2: train
import org.cleartk.ml.libsvm.LibSvmStringOutcomeDataWriter; //導入依賴的package包/類
@Override
protected void train(CollectionReader collectionReader, File directory) throws Exception {
String tmpView = "DP";
AggregateBuilder b = new AggregateBuilder();
b.add(AnalysisEngineFactory.createEngineDescription(PrepareClearTk.class, PrepareClearTk.PARAM_VIEW_NAME,
tmpView, PrepareClearTk.PARAM_ANNOTATION_TYPE, DramatisPersonae.class,
PrepareClearTk.PARAM_SUBANNOTATIONS, Arrays.asList(Figure.class)));
b.add(AnalysisEngineFactory.createEngineDescription(BreakIteratorSegmenter.class), CAS.NAME_DEFAULT_SOFA,
tmpView);
b.add(AnalysisEngineFactory.createEngineDescription(ClearTkGenderAnnotator.class,
DefaultDataWriterFactory.PARAM_DATA_WRITER_CLASS_NAME, LibSvmStringOutcomeDataWriter.class,
DirectoryDataWriterFactory.PARAM_OUTPUT_DIRECTORY, directory), CAS.NAME_DEFAULT_SOFA, tmpView);
b.add(AnalysisEngineFactory.createEngineDescription(XmiWriter.class, XmiWriter.PARAM_TARGET_LOCATION,
"target/xmi"));
SimplePipeline.runPipeline(collectionReader, b.createAggregate());
Train.main(directory, new String[] { "-t", "0" });
}
示例3: main
import org.cleartk.ml.libsvm.LibSvmStringOutcomeDataWriter; //導入依賴的package包/類
public static void main(String[] args) throws Exception {
CollectionReaderDescription reader = CollectionReaderFactory.createReaderDescription(XmiReader.class,
XmiReader.PARAM_SOURCE_LOCATION, "src/main/resources/gender/*/*.xmi", XmiReader.PARAM_LENIENT, true);
String tmpView = "DP";
AggregateBuilder b = new AggregateBuilder();
b.add(AnalysisEngineFactory.createEngineDescription(PrepareClearTk.class, PrepareClearTk.PARAM_VIEW_NAME,
tmpView, PrepareClearTk.PARAM_ANNOTATION_TYPE, DramatisPersonae.class,
PrepareClearTk.PARAM_SUBANNOTATIONS, Arrays.asList(Figure.class)));
b.add(AnalysisEngineFactory.createEngineDescription(BreakIteratorSegmenter.class), CAS.NAME_DEFAULT_SOFA,
tmpView);
b.add(AnalysisEngineFactory.createEngineDescription(ClearTkGenderAnnotator.class,
DefaultDataWriterFactory.PARAM_DATA_WRITER_CLASS_NAME, LibSvmStringOutcomeDataWriter.class,
DirectoryDataWriterFactory.PARAM_OUTPUT_DIRECTORY, "target/models"), CAS.NAME_DEFAULT_SOFA, tmpView);
b.add(AnalysisEngineFactory.createEngineDescription(XmiWriter.class, XmiWriter.PARAM_TARGET_LOCATION,
"target/xmi"));
SimplePipeline.runPipeline(reader, b.createAggregateDescription());
Train.main(new File("target/models"), new String[] { "-t", "0" });
}
示例4: testLibsvm
import org.cleartk.ml.libsvm.LibSvmStringOutcomeDataWriter; //導入依賴的package包/類
@Test
public void testLibsvm() throws Exception {
String outDirectoryName = outputDirectoryName + "/libsvm";
AnalysisEngineDescription dataWriter = AnalysisEngineFactory.createEngineDescription(
ExamplePosAnnotator.class,
CleartkSequenceAnnotator.PARAM_DATA_WRITER_FACTORY_CLASS_NAME,
ViterbiDataWriterFactory.class.getName(),
DirectoryDataWriterFactory.PARAM_OUTPUT_DIRECTORY,
outDirectoryName,
DefaultDataWriterFactory.PARAM_DATA_WRITER_CLASS_NAME,
LibSvmStringOutcomeDataWriter.class.getName(),
ViterbiDataWriterFactory.PARAM_OUTCOME_FEATURE_EXTRACTOR_NAMES,
new String[] { DefaultOutcomeFeatureExtractor.class.getName() });
testClassifier(dataWriter, outDirectoryName, 1, "-t", "0"); // MultiClassLIBSVMClassifier.score
// is not implemented so we cannot
// have a stack size greater than 1.
String firstLine = FileUtil.loadListOfStrings(new File(outDirectoryName
+ "/2008_Sichuan_earthquake.txt.pos"))[0].trim();
boolean badTags = firstLine.equals("2008/NN Sichuan/NN earthquake/NN From/NN Wikipedia/NN ,/NN the/NN free/NN encyclopedia/NN");
assertFalse(badTags);
assertEquals(
"2008/NN Sichuan/NN earthquake/NN From/IN Wikipedia/NN ,/, the/DT free/NN encyclopedia/NN",
firstLine);
}
示例5: testLibsvm
import org.cleartk.ml.libsvm.LibSvmStringOutcomeDataWriter; //導入依賴的package包/類
@Test
public void testLibsvm() throws Exception {
String libsvmDirectoryName = outputDirectory + "/libsvm";
AnalysisEngineDescription dataWriter = AnalysisEngineFactory.createEngineDescription(
NonSequenceExamplePosAnnotator.class,
DefaultDataWriterFactory.PARAM_DATA_WRITER_CLASS_NAME,
LibSvmStringOutcomeDataWriter.class.getName(),
DirectoryDataWriterFactory.PARAM_OUTPUT_DIRECTORY,
libsvmDirectoryName);
testClassifier(dataWriter, libsvmDirectoryName, "-t", "0", "-c", "0.1");
String firstLine = FileUtil.loadListOfStrings(new File(libsvmDirectoryName
+ "/2008_Sichuan_earthquake.txt.pos"))[0].trim();
checkPOS(firstLine);
}
示例6: main
import org.cleartk.ml.libsvm.LibSvmStringOutcomeDataWriter; //導入依賴的package包/類
public static void main(String[] args) throws Exception {
Options options = CliFactory.parseArguments(Options.class, args);
// ////////////////////////////////////////
// Create collection reader to load URIs
// ////////////////////////////////////////
CollectionReader reader = UriCollectionReader.getCollectionReaderFromDirectory(
options.getTrainDirectory(),
UriCollectionReader.RejectSystemFiles.class,
UriCollectionReader.RejectSystemDirectories.class);
// ////////////////////////////////////////
// Create document classification pipeline
// ////////////////////////////////////////
AggregateBuilder builder = new AggregateBuilder();
// Convert URIs in CAS URI View to Plain Text
builder.add(UriToDocumentTextAnnotator.getDescription());
// Label documents with gold labels for training
builder.add(AnalysisEngineFactory.createEngineDescription(GoldDocumentCategoryAnnotator.class));
// NLP pre-processing components
builder.add(SentenceAnnotator.getDescription()); // Sentence segmentation
builder.add(TokenAnnotator.getDescription()); // Tokenization
builder.add(DefaultSnowballStemmer.getDescription("English")); // Stemming
// The simple document classification annotator
builder.add(AnalysisEngineFactory.createEngineDescription(
BasicDocumentClassificationAnnotator.class,
DefaultDataWriterFactory.PARAM_DATA_WRITER_CLASS_NAME,
LibSvmStringOutcomeDataWriter.class.getName(),
DirectoryDataWriterFactory.PARAM_OUTPUT_DIRECTORY,
options.getModelsDirectory()));
// ///////////////////////////////////////////
// Run pipeline to create training data file
// ///////////////////////////////////////////
SimplePipeline.runPipeline(reader, builder.createAggregateDescription());
// //////////////////////////////////////////////////////////////////////////////
// Train and write model
// //////////////////////////////////////////////////////////////////////////////
JarClassifierBuilder.trainAndPackage(
options.getModelsDirectory(),
options.getTrainingArguments().toArray(new String[options.getTrainingArguments().size()]));
}
示例7: testMultiClassLIBSVM
import org.cleartk.ml.libsvm.LibSvmStringOutcomeDataWriter; //導入依賴的package包/類
@Test
public void testMultiClassLIBSVM() throws Exception {
// create the data writer
StringAnnotator annotator = new StringAnnotator();
annotator.initialize(UimaContextFactory.createUimaContext(
DirectoryDataWriterFactory.PARAM_OUTPUT_DIRECTORY,
this.outputDirectoryName,
DefaultDataWriterFactory.PARAM_DATA_WRITER_CLASS_NAME,
LibSvmStringOutcomeDataWriter.class.getName()));
// run process to produce a bunch of instances
annotator.process(null);
annotator.collectionProcessComplete();
// check that the output files were written for each class
BufferedReader reader = new BufferedReader(new FileReader(new File(
this.outputDirectoryName,
"training-data.libsvm")));
Assert.assertTrue(reader.readLine().length() > 0);
reader.close();
// run the training command
HideOutput hider = new HideOutput();
Train.main(this.outputDirectoryName, "-c", "10", "-t", "0");
hider.restoreOutput();
// read in the classifier and test it on new instances
LibSvmStringOutcomeClassifierBuilder builder = new LibSvmStringOutcomeClassifierBuilder();
LibSvmStringOutcomeClassifier classifier;
classifier = builder.loadClassifierFromTrainingDirectory(this.outputDirectory);
for (Instance<String> instance : ExampleInstanceFactory.generateStringInstances(1000)) {
List<Feature> features = instance.getFeatures();
String outcome = instance.getOutcome();
Assert.assertEquals(outcome, classifier.classify(features));
Map<String, Double> scoredOutcomes = classifier.score(features);
for (String otherOutcome : Arrays.asList("A", "B", "C")) {
if (!otherOutcome.equals(outcome)) {
Assert.assertTrue(scoredOutcomes.get(outcome) > scoredOutcomes.get(otherOutcome));
}
}
}
}