本文整理匯總了Java中org.apache.spark.sql.types.StructType類的典型用法代碼示例。如果您正苦於以下問題:Java StructType類的具體用法?Java StructType怎麽用?Java StructType使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
StructType類屬於org.apache.spark.sql.types包,在下文中一共展示了StructType類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: createNGramDataFrame
import org.apache.spark.sql.types.StructType; //導入依賴的package包/類
/**
* Creates a n-gram data frame from text lines.
* @param lines
* @return a n-gram data frame.
*/
DataFrame createNGramDataFrame(JavaRDD<String> lines) {
JavaRDD<Row> rows = lines.map(new Function<String, Row>(){
private static final long serialVersionUID = -4332903997027358601L;
@Override
public Row call(String line) throws Exception {
return RowFactory.create(Arrays.asList(line.split("\\s+")));
}
});
StructType schema = new StructType(new StructField[] {
new StructField("words",
DataTypes.createArrayType(DataTypes.StringType), false,
Metadata.empty()) });
DataFrame wordDF = new SQLContext(jsc).createDataFrame(rows, schema);
// build a bigram language model
NGram transformer = new NGram().setInputCol("words")
.setOutputCol("ngrams").setN(2);
DataFrame ngramDF = transformer.transform(wordDF);
ngramDF.show(10, false);
return ngramDF;
}
示例2: test_getDataSetResult
import org.apache.spark.sql.types.StructType; //導入依賴的package包/類
@Test
public void test_getDataSetResult() {
StructField[] structFields = new StructField[]{
new StructField("intColumn", DataTypes.IntegerType, true, Metadata.empty()),
new StructField("stringColumn", DataTypes.StringType, true, Metadata.empty())
};
StructType structType = new StructType(structFields);
List<Row> rows = new ArrayList<>();
rows.add(RowFactory.create(1, "v1"));
rows.add(RowFactory.create(2, "v2"));
Dataset<Row> df = sparkSession.createDataFrame(rows, structType);
DataSetResult dataSetResult = SparkUtils.getDataSetResult(df);
Assert.assertEquals(2, dataSetResult.getColumnNames().size());
Assert.assertEquals(2, dataSetResult.getRows().size());
Assert.assertEquals(new Integer(1), dataSetResult.getRows().get(0).get(0));
Assert.assertEquals("v1", dataSetResult.getRows().get(0).get(1));
Assert.assertEquals(new Integer(2), dataSetResult.getRows().get(1).get(0));
Assert.assertEquals("v2", dataSetResult.getRows().get(1).get(1));
}
示例3: generateData_week_timepoints_by_10_minutes
import org.apache.spark.sql.types.StructType; //導入依賴的package包/類
private static Dataset<Row> generateData_week_timepoints_by_10_minutes(SparkSession spark) {
StructField[] structFields = new StructField[1];
org.apache.spark.sql.types.DataType dataType = DataTypes.IntegerType;
String column = "timepoint";
StructField structField = new StructField(column, dataType, true, Metadata.empty());
structFields[0] = structField;
StructType structType = new StructType(structFields);
List<Row> rows = new ArrayList<>();
int weekTotalMinutes = 7 * 24 * 60;
int timepointIntervalMinutes = 10;
for (int i = 0; i < weekTotalMinutes / timepointIntervalMinutes; i++) {
Object[] objects = new Object[structFields.length];
objects[0] = i;
Row row = RowFactory.create(objects);
rows.add(row);
}
Dataset<Row> df = spark.createDataFrame(rows, structType);
return df;
}
示例4: parse
import org.apache.spark.sql.types.StructType; //導入依賴的package包/類
/**
* Parses a list of PoS-tagged sentences, each on a line and writes the result to an output
* file in a specified output format.
* @param jsc
* @param sentences
* @param outputFileName
* @param outuptFormat
*/
public void parse(JavaSparkContext jsc, List<String> sentences, String outputFileName, OutputFormat outputFormat) {
JavaRDD<String> input = jsc.parallelize(sentences);
JavaRDD<Sentence> sents = input.map(new TaggedLineToSentenceFunction());
JavaRDD<DependencyGraph> graphs = sents.map(new ParsingFunction());
JavaRDD<Row> rows = graphs.map(new Function<DependencyGraph, Row>() {
private static final long serialVersionUID = -812004521983071103L;
public Row call(DependencyGraph graph) {
return RowFactory.create(graph.getSentence().toString(), graph.dependencies());
}
});
StructType schema = new StructType(new StructField[]{
new StructField("sentence", DataTypes.StringType, false, Metadata.empty()),
new StructField("dependency", DataTypes.StringType, false, Metadata.empty())
});
SQLContext sqlContext = new SQLContext(jsc);
DataFrame df = sqlContext.createDataFrame(rows, schema);
if (outputFormat == OutputFormat.TEXT)
df.select("dependency").write().text(outputFileName);
else
df.repartition(1).write().json(outputFileName);
}
示例5: datasetSchema
import org.apache.spark.sql.types.StructType; //導入依賴的package包/類
static public StructType datasetSchema(Map<String, String> mappa) {
StructType struct = new StructType();
for (Map.Entry<String, String> entry : mappa.entrySet()) {
switch (entry.getValue().toLowerCase()) {
case "string":
case "dictionary":
struct = struct.add(entry.getKey(), DataTypes.StringType);
break;
case "int":
struct = struct.add(entry.getKey(), DataTypes.IntegerType);
break;
case "double":
struct = struct.add(entry.getKey(), DataTypes.DoubleType);
break;
}
}
return struct;
}
示例6: fromSchema
import org.apache.spark.sql.types.StructType; //導入依賴的package包/類
/**
* Convert a datavec schema to a
* struct type in spark
*
* @param schema the schema to convert
* @return the datavec struct type
*/
public static StructType fromSchema(Schema schema) {
StructField[] structFields = new StructField[schema.numColumns()];
for (int i = 0; i < structFields.length; i++) {
switch (schema.getColumnTypes().get(i)) {
case Double:
structFields[i] = new StructField(schema.getName(i), DataTypes.DoubleType, false, Metadata.empty());
break;
case Integer:
structFields[i] =
new StructField(schema.getName(i), DataTypes.IntegerType, false, Metadata.empty());
break;
case Long:
structFields[i] = new StructField(schema.getName(i), DataTypes.LongType, false, Metadata.empty());
break;
case Float:
structFields[i] = new StructField(schema.getName(i), DataTypes.FloatType, false, Metadata.empty());
break;
default:
throw new IllegalStateException(
"This api should not be used with strings , binary data or ndarrays. This is only for columnar data");
}
}
return new StructType(structFields);
}
示例7: generateData_numbers_1k
import org.apache.spark.sql.types.StructType; //導入依賴的package包/類
private static Dataset<Row> generateData_numbers_1k(SparkSession spark) {
StructField[] structFields = new StructField[1];
org.apache.spark.sql.types.DataType dataType = DataTypes.IntegerType;
String column = "number";
StructField structField = new StructField(column, dataType, true, Metadata.empty());
structFields[0] = structField;
StructType structType = new StructType(structFields);
List<Row> rows = new ArrayList<>();
for (int i = 0; i <= 1000; i++) {
Object[] objects = new Object[structFields.length];
objects[0] = i;
Row row = RowFactory.create(objects);
rows.add(row);
}
Dataset<Row> df = spark.createDataFrame(rows, structType);
return df;
}
示例8: writeEntityMetadata
import org.apache.spark.sql.types.StructType; //導入依賴的package包/類
/**
* Write metadata describing entity tables
*
* @param entitySchema the entity schema
*/
public void writeEntityMetadata(EntitySchema entitySchema) {
// create the schema
List<StructField> fields = new ArrayList<>();
fields.add(DataTypes.createStructField(ENTITIES_NAME, DataTypes.StringType, false));
fields.add(DataTypes.createStructField(ENTITIES_URI, DataTypes.StringType, false));
fields.add(DataTypes.createStructField(ENTITIES_LABEL, DataTypes.StringType, true));
fields.add(DataTypes.createStructField(ENTITIES_NUM_ROWS, DataTypes.LongType, false));
StructType schema = DataTypes.createStructType(fields);
List<Tuple2<String, String>> indexes = new ArrayList<>();
indexes.add(new Tuple2<>(ENTITIES_TABLE_NAME, ENTITIES_URI));
List<Tuple2<String, String>> primaryKeys = new ArrayList<>();
indexes.add(new Tuple2<>(ENTITIES_TABLE_NAME, ENTITIES_NAME));
final Map<String, String> uriLabels = rdfSchema.getUriLabels();
// create table rows
List<Row> rows = entitySchema.getTables().stream()
.map(table -> {
Object[] valueArray = new Object[]{
table.getName(),
table.getTypeURI(),
uriLabels.get(table.getTypeURI()),
table.getNumRows()
};
return RowFactory.create(valueArray);
}).collect(Collectors.toList());
// create and write the META_Entities dataframe
DataFrame df = sql.createDataFrame(rows, schema);
persistor.writeDataFrame(ENTITIES_TABLE_NAME, df);
persistor.createPrimaryKeys(primaryKeys);
persistor.createIndexes(indexes);
df.unpersist();
}
示例9: schemaFor
import org.apache.spark.sql.types.StructType; //導入依賴的package包/類
private static Schema schemaFor(StructType structType, String record, String namespace, int recordCount) {
// Increment after using the recordCount
record = (null == record) ? "record" + recordCount++ : record;
LOG.debug("Converting {} to Avro Record schema [{}:{}]", structType, record, namespace);
SchemaBuilder.RecordBuilder<Schema> schema = SchemaBuilder.record(record);
if (null != namespace) {
schema.namespace(namespace);
}
schema.doc("Auto-generated from Spark DataFrame");
SchemaBuilder.FieldAssembler<Schema> assembler = schema.fields();
StructField[] structFields = structType.fields();
for (StructField f : structFields) {
assembler.name(f.name()).type(typeFor(f.dataType(), f.nullable(), recordCount)).noDefault();
}
return assembler.endRecord();
}
示例10: coerceParsedTokens
import org.apache.spark.sql.types.StructType; //導入依賴的package包/類
private static Object[] coerceParsedTokens(
String line, Object[] tokens, boolean safe,
StructType schema, List<FastDateFormat> dateFormats) throws Exception {
Object[] result = new Object[tokens.length];
for (int i = 0; i < tokens.length; i++) {
try {
tokens[i] = !schema.apply(i).dataType().simpleString().equalsIgnoreCase("String") ? tokens[i].toString().trim() : tokens[i];
result[i] = TypeCast.inputValue(tokens[i].toString(), schema.apply(i).dataType(),
schema.apply(i).nullable(), "null", true, dateFormats.get(i));
} catch (Exception exception) {
result[i] = null;
if (!safe) {
throw new RuntimeException(getSafeMessage(tokens[i], i, schema) + "\n Line being parsed => " + line,exception);
}
}
}
tokens = result;
return tokens;
}
示例11: fromSchemaSequence
import org.apache.spark.sql.types.StructType; //導入依賴的package包/類
/**
* Convert the DataVec sequence schema to a StructType for Spark, for example for use in
* {@link #toDataFrameSequence(Schema, JavaRDD)}}
* <b>Note</b>: as per {@link #toDataFrameSequence(Schema, JavaRDD)}}, the StructType has two additional columns added to it:<br>
* - Column 0: Sequence UUID (name: {@link #SEQUENCE_UUID_COLUMN}) - a UUID for the original sequence<br>
* - Column 1: Sequence index (name: {@link #SEQUENCE_INDEX_COLUMN} - an index (integer, starting at 0) for the position
* of this record in the original time series.<br>
* These two columns are required if the data is to be converted back into a sequence at a later point, for example
* using {@link #toRecordsSequence(DataRowsFacade)}
*
* @param schema Schema to convert
* @return StructType for the schema
*/
public static StructType fromSchemaSequence(Schema schema) {
StructField[] structFields = new StructField[schema.numColumns() + 2];
structFields[0] = new StructField(SEQUENCE_UUID_COLUMN, DataTypes.StringType, false, Metadata.empty());
structFields[1] = new StructField(SEQUENCE_INDEX_COLUMN, DataTypes.IntegerType, false, Metadata.empty());
for (int i = 0; i < schema.numColumns(); i++) {
switch (schema.getColumnTypes().get(i)) {
case Double:
structFields[i + 2] =
new StructField(schema.getName(i), DataTypes.DoubleType, false, Metadata.empty());
break;
case Integer:
structFields[i + 2] =
new StructField(schema.getName(i), DataTypes.IntegerType, false, Metadata.empty());
break;
case Long:
structFields[i + 2] =
new StructField(schema.getName(i), DataTypes.LongType, false, Metadata.empty());
break;
case Float:
structFields[i + 2] =
new StructField(schema.getName(i), DataTypes.FloatType, false, Metadata.empty());
break;
default:
throw new IllegalStateException(
"This api should not be used with strings , binary data or ndarrays. This is only for columnar data");
}
}
return new StructType(structFields);
}
示例12: createRelation
import org.apache.spark.sql.types.StructType; //導入依賴的package包/類
@Override
public SparkRDF4JSparqlRelation createRelation(SQLContext sqlContext,
scala.collection.immutable.Map<String, String> scalaParameters, StructType schema) {
Map<String, String> parameters = JavaConversions.asJavaMap(scalaParameters);
String service = Optional.ofNullable(parameters.get("service")).orElseThrow(() -> new RuntimeException(
"Spark RDF4J Sparql requires a SPARQL 'service' to be specified in the parameters"));
String query = Optional.ofNullable(parameters.get("query")).orElseThrow(() -> new RuntimeException(
"Spark RDF4J Sparql requires a 'query' to be specified in the parameters"));
try {
ParsedQuery parsedQuery = QueryParserUtil.parseQuery(QueryLanguage.SPARQL, query, null);
if(!(parsedQuery instanceof ParsedTupleQuery)) {
throw new RuntimeException("Spark RDF4J can only be used with Tuple (Select) queries right now.");
}
return new SparkRDF4JSparqlRelation(service, parsedQuery, schema, sqlContext);
} catch (MalformedQueryException e) {
throw new RuntimeException("Query was not valid SPARQL", e);
}
}
示例13: call
import org.apache.spark.sql.types.StructType; //導入依賴的package包/類
@Override
public void call(JavaRDD<String> rdd) throws Exception {
JavaRDD<Row> rowRDD = rdd.map(new Function<String, Row>() {
private static final long serialVersionUID = 5167089361335095997L;
@Override
public Row call(String msg) {
Row row = RowFactory.create(msg);
return row;
}
});
// Create Schema
StructType schema = DataTypes.createStructType(
new StructField[] { DataTypes.createStructField("Message", DataTypes.StringType, true) });
// Get Spark 2.0 session
SparkSession spark = JavaSparkSessionSingleton.getInstance(rdd.context().getConf());
Dataset<Row> msgDataFrame = spark.createDataFrame(rowRDD, schema);
msgDataFrame.show();
}
示例14: testPruneByStepValueFalse
import org.apache.spark.sql.types.StructType; //導入依賴的package包/類
@Test
public void testPruneByStepValueFalse() {
StructType schema = new StructType(new StructField[] {
new StructField("outcome", DataTypes.BooleanType, false, Metadata.empty())
});
List<Row> rows = Lists.newArrayList(
RowFactory.create(false)
);
Dataset<Row> ds = Contexts.getSparkSession().createDataFrame(rows, schema);
step1.setData(ds);
Map<String, Object> step2ConfigMap = Maps.newHashMap();
step2ConfigMap.put("dependencies", Lists.newArrayList("step1"));
step2ConfigMap.put(DecisionStep.IF_TRUE_STEP_NAMES_PROPERTY, Lists.newArrayList("step3", "step7"));
step2ConfigMap.put(DecisionStep.DECISION_METHOD_PROPERTY, DecisionStep.STEP_BY_VALUE_DECISION_METHOD);
step2ConfigMap.put(DecisionStep.STEP_BY_VALUE_STEP_PROPERTY, "step1");
Config step2Config = ConfigFactory.parseMap(step2ConfigMap);
RefactorStep step2 = new DecisionStep("step2", step2Config);
steps.add(step2);
Set<Step> refactored = step2.refactor(steps);
assertEquals(refactored, Sets.newHashSet(step1, step2, step5, step6));
}
示例15: create
import org.apache.spark.sql.types.StructType; //導入依賴的package包/類
public static BaseOrdering create(StructType schema) {
final DataType[] dataTypes = new DataType[schema.size()];
for (int i = 0; i < schema.size(); i++) {
dataTypes[i] = schema.get(i).dataType;
}
return new BaseOrdering() {
@Override
public int compare(InternalRow a, InternalRow b) {
assert a.numFields() == b.numFields() && a.numFields() == schema.size();
int res;
for (int i = 0; i < dataTypes.length; i++) {
if ((res = dataTypes[i].comparator.compare(a.getUniformVal(i), b.getUniformVal(i))) != 0) {
return res;
}
}
return 0;
}
};
}