本文整理匯總了Java中org.apache.kafka.streams.kstream.Materialized類的典型用法代碼示例。如果您正苦於以下問題:Java Materialized類的具體用法?Java Materialized怎麽用?Java Materialized使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
Materialized類屬於org.apache.kafka.streams.kstream包,在下文中一共展示了Materialized類的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: main
import org.apache.kafka.streams.kstream.Materialized; //導入依賴的package包/類
public static void main(String[] args) throws CertificateException, NoSuchAlgorithmException,
KeyStoreException, IOException, URISyntaxException {
Properties streamsConfig = new AggregatorConfig().getProperties();
final StreamsBuilder builder = new StreamsBuilder();
final KStream<Windowed<String>, String> words =
builder.stream(String.format("%swords", HEROKU_KAFKA_PREFIX));
words
.groupBy((key, word) -> word)
.windowedBy(TimeWindows.of(TimeUnit.SECONDS.toMillis(10)))
.count(Materialized.as("windowed-counts"))
.toStream()
.process(PostgresSink::new);
final KafkaStreams streams = new KafkaStreams(builder.build(), streamsConfig);
streams.cleanUp();
streams.start();
Runtime.getRuntime().addShutdownHook(new Thread(streams::close));
}
示例2: aggregate
import org.apache.kafka.streams.kstream.Materialized; //導入依賴的package包/類
@SuppressWarnings("unchecked")
public SchemaKTable aggregate(final Initializer initializer,
final UdafAggregator aggregator,
final WindowExpression windowExpression,
final Serde<GenericRow> topicValueSerDe,
final String storeName) {
final KTable aggKtable;
if (windowExpression != null) {
final Materialized<String, GenericRow, ?> materialized
= Materialized.<String, GenericRow, WindowStore<Bytes, byte[]>>as(storeName)
.withKeySerde(Serdes.String())
.withValueSerde(topicValueSerDe);
final KsqlWindowExpression ksqlWindowExpression = windowExpression.getKsqlWindowExpression();
aggKtable = ksqlWindowExpression.applyAggregate(kgroupedStream, initializer, aggregator, materialized);
} else {
aggKtable = kgroupedStream.aggregate(initializer, aggregator, Materialized.with(Serdes.String(), topicValueSerDe));
}
return new SchemaKTable(schema, aggKtable, keyField, sourceSchemaKStreams, windowExpression != null,
SchemaKStream.Type.AGGREGATE, functionRegistry, schemaRegistryClient);
}
示例3: shouldCreateTumblingWindowAggregate
import org.apache.kafka.streams.kstream.Materialized; //導入依賴的package包/類
@Test
public void shouldCreateTumblingWindowAggregate() {
final KGroupedStream stream = EasyMock.createNiceMock(KGroupedStream.class);
final TimeWindowedKStream windowedKStream = EasyMock.createNiceMock(TimeWindowedKStream.class);
final UdafAggregator aggregator = EasyMock.createNiceMock(UdafAggregator.class);
final TumblingWindowExpression windowExpression = new TumblingWindowExpression(10, TimeUnit.SECONDS);
final Initializer initializer = () -> 0;
final Materialized<String, GenericRow, WindowStore<Bytes, byte[]>> store = Materialized.as("store");
EasyMock.expect(stream.windowedBy(TimeWindows.of(10000L))).andReturn(windowedKStream);
EasyMock.expect(windowedKStream.aggregate(same(initializer), same(aggregator), same(store))).andReturn(null);
EasyMock.replay(stream, windowedKStream);
windowExpression.applyAggregate(stream, initializer, aggregator, store);
EasyMock.verify(stream, windowedKStream);
}
示例4: shouldCreateHoppingWindowAggregate
import org.apache.kafka.streams.kstream.Materialized; //導入依賴的package包/類
@Test
public void shouldCreateHoppingWindowAggregate() {
final KGroupedStream stream = EasyMock.createNiceMock(KGroupedStream.class);
final TimeWindowedKStream windowedKStream = EasyMock.createNiceMock(TimeWindowedKStream.class);
final UdafAggregator aggregator = EasyMock.createNiceMock(UdafAggregator.class);
final HoppingWindowExpression windowExpression = new HoppingWindowExpression(10, TimeUnit.SECONDS, 4, TimeUnit.MILLISECONDS);
final Initializer initializer = () -> 0;
final Materialized<String, GenericRow, WindowStore<Bytes, byte[]>> store = Materialized.as("store");
EasyMock.expect(stream.windowedBy(TimeWindows.of(10000L).advanceBy(4L))).andReturn(windowedKStream);
EasyMock.expect(windowedKStream.aggregate(same(initializer), same(aggregator), same(store))).andReturn(null);
EasyMock.replay(stream, windowedKStream);
windowExpression.applyAggregate(stream, initializer, aggregator, store);
EasyMock.verify(stream, windowedKStream);
}
示例5: main
import org.apache.kafka.streams.kstream.Materialized; //導入依賴的package包/類
public static void main(String[] args) throws Exception {
Properties props = new Properties();
props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-wordcount");
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());
final StreamsBuilder builder = new StreamsBuilder();
builder.<String, String>stream("streams-plaintext-input")
.flatMapValues(value -> Arrays.asList(value.toLowerCase(Locale.getDefault()).split("\\W+")))
.groupBy((key, value) -> value)
.count(Materialized.<String, Long, KeyValueStore<Bytes, byte[]>>as("counts-store"))
.toStream()
.to("streams-wordcount-output", Produced.with(Serdes.String(), Serdes.Long()));
final Topology topology = builder.build();
final KafkaStreams streams = new KafkaStreams(topology, props);
final CountDownLatch latch = new CountDownLatch(1);
// attach shutdown handler to catch control-c
Runtime.getRuntime().addShutdownHook(new Thread("streams-shutdown-hook") {
@Override
public void run() {
streams.close();
latch.countDown();
}
});
try {
streams.start();
latch.await();
} catch (Throwable e) {
System.exit(1);
}
System.exit(0);
}
示例6: main
import org.apache.kafka.streams.kstream.Materialized; //導入依賴的package包/類
public static void main(String[] args) throws CertificateException, NoSuchAlgorithmException,
KeyStoreException, IOException, URISyntaxException {
Properties streamsConfig = new AnomalyDetectorConfig().getProperties();
final StreamsBuilder builder = new StreamsBuilder();
final KStream<String, String> loglines =
builder.stream( String.format("%sloglines", HEROKU_KAFKA_PREFIX));
KStream<Windowed<String>, Long> anomalies = loglines
.filter((key, value) -> value.contains("login failed"))
.selectKey((key, value) -> value.split("\\|")[0])
.groupByKey()
.windowedBy(TimeWindows.of(TimeUnit.SECONDS.toMillis(10)))
.count(Materialized.as("windowed-counts"))
.toStream();
@SuppressWarnings("unchecked")
KStream<Windowed<String>, Long>[] branches = anomalies
.branch(
(key, value) -> value > 1,
(key, value) -> value > 0
);
branches[0].process(AlertSink::new);
branches[1].process(EmailSink::new);
final KafkaStreams streams = new KafkaStreams(builder.build(), streamsConfig);
streams.cleanUp();
streams.start();
Runtime.getRuntime().addShutdownHook(new Thread(streams::close));
}
示例7: applyAggregate
import org.apache.kafka.streams.kstream.Materialized; //導入依賴的package包/類
@SuppressWarnings("unchecked")
@Override
public KTable applyAggregate(final KGroupedStream groupedStream,
final Initializer initializer,
final UdafAggregator aggregator,
final Materialized<String, GenericRow, ?> materialized) {
return groupedStream.windowedBy(SessionWindows.with(sizeUnit.toMillis(gap)))
.aggregate(initializer, aggregator, aggregator.getMerger(),
materialized);
}
示例8: applyAggregate
import org.apache.kafka.streams.kstream.Materialized; //導入依賴的package包/類
@SuppressWarnings("unchecked")
@Override
public KTable applyAggregate(final KGroupedStream groupedStream,
final Initializer initializer,
final UdafAggregator aggregator,
final Materialized<String, GenericRow, ?> materialized) {
return groupedStream.windowedBy(TimeWindows.of(sizeUnit.toMillis(size)))
.aggregate(initializer, aggregator, materialized);
}
示例9: applyAggregate
import org.apache.kafka.streams.kstream.Materialized; //導入依賴的package包/類
@SuppressWarnings("unchecked")
@Override
public KTable applyAggregate(KGroupedStream groupedStream, Initializer initializer, UdafAggregator aggregator, Materialized<String, GenericRow, ?> materialized) {
return groupedStream.windowedBy(TimeWindows.of(
sizeUnit.toMillis(size))
.advanceBy(
advanceByUnit.toMillis(advanceBy)))
.aggregate(initializer, aggregator, materialized);
}
示例10: applyAggregate
import org.apache.kafka.streams.kstream.Materialized; //導入依賴的package包/類
public abstract KTable applyAggregate(final KGroupedStream groupedStream,
final Initializer initializer,
final UdafAggregator aggregator,
final Materialized<String, GenericRow, ?> materialized);