本文整理匯總了Java中org.apache.hadoop.mapred.JobClient類的典型用法代碼示例。如果您正苦於以下問題:Java JobClient類的具體用法?Java JobClient怎麽用?Java JobClient使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
JobClient類屬於org.apache.hadoop.mapred包,在下文中一共展示了JobClient類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: runTests
import org.apache.hadoop.mapred.JobClient; //導入依賴的package包/類
/**
* Run the test
*
* @throws IOException on error
*/
public static void runTests() throws IOException {
config.setLong("io.bytes.per.checksum", bytesPerChecksum);
JobConf job = new JobConf(config, NNBench.class);
job.setJobName("NNBench-" + operation);
FileInputFormat.setInputPaths(job, new Path(baseDir, CONTROL_DIR_NAME));
job.setInputFormat(SequenceFileInputFormat.class);
// Explicitly set number of max map attempts to 1.
job.setMaxMapAttempts(1);
// Explicitly turn off speculative execution
job.setSpeculativeExecution(false);
job.setMapperClass(NNBenchMapper.class);
job.setReducerClass(NNBenchReducer.class);
FileOutputFormat.setOutputPath(job, new Path(baseDir, OUTPUT_DIR_NAME));
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setNumReduceTasks((int) numberOfReduces);
JobClient.runJob(job);
}
示例2: testInputFormat
import org.apache.hadoop.mapred.JobClient; //導入依賴的package包/類
void testInputFormat(Class<? extends InputFormat> clazz) throws IOException {
final JobConf job = MapreduceTestingShim.getJobConf(mrCluster);
job.setInputFormat(clazz);
job.setOutputFormat(NullOutputFormat.class);
job.setMapperClass(ExampleVerifier.class);
job.setNumReduceTasks(0);
LOG.debug("submitting job.");
final RunningJob run = JobClient.runJob(job);
assertTrue("job failed!", run.isSuccessful());
assertEquals("Saw the wrong number of instances of the filtered-for row.", 2, run.getCounters()
.findCounter(TestTableInputFormat.class.getName() + ":row", "aaa").getCounter());
assertEquals("Saw any instances of the filtered out row.", 0, run.getCounters()
.findCounter(TestTableInputFormat.class.getName() + ":row", "bbb").getCounter());
assertEquals("Saw the wrong number of instances of columnA.", 1, run.getCounters()
.findCounter(TestTableInputFormat.class.getName() + ":family", "columnA").getCounter());
assertEquals("Saw the wrong number of instances of columnB.", 1, run.getCounters()
.findCounter(TestTableInputFormat.class.getName() + ":family", "columnB").getCounter());
assertEquals("Saw the wrong count of values for the filtered-for row.", 2, run.getCounters()
.findCounter(TestTableInputFormat.class.getName() + ":value", "value aaa").getCounter());
assertEquals("Saw the wrong count of values for the filtered-out row.", 0, run.getCounters()
.findCounter(TestTableInputFormat.class.getName() + ":value", "value bbb").getCounter());
}
示例3: runIOTest
import org.apache.hadoop.mapred.JobClient; //導入依賴的package包/類
private void runIOTest(
Class<? extends Mapper<Text, LongWritable, Text, Text>> mapperClass,
Path outputDir) throws IOException {
JobConf job = new JobConf(config, TestDFSIO.class);
FileInputFormat.setInputPaths(job, getControlDir(config));
job.setInputFormat(SequenceFileInputFormat.class);
job.setMapperClass(mapperClass);
job.setReducerClass(AccumulatingReducer.class);
FileOutputFormat.setOutputPath(job, outputDir);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setNumReduceTasks(1);
JobClient.runJob(job);
}
示例4: joinAs
import org.apache.hadoop.mapred.JobClient; //導入依賴的package包/類
private static void joinAs(String jointype,
Class<? extends SimpleCheckerBase> c) throws Exception {
final int srcs = 4;
Configuration conf = new Configuration();
JobConf job = new JobConf(conf, c);
Path base = cluster.getFileSystem().makeQualified(new Path("/"+jointype));
Path[] src = writeSimpleSrc(base, conf, srcs);
job.set("mapreduce.join.expr", CompositeInputFormat.compose(jointype,
SequenceFileInputFormat.class, src));
job.setInt("testdatamerge.sources", srcs);
job.setInputFormat(CompositeInputFormat.class);
FileOutputFormat.setOutputPath(job, new Path(base, "out"));
job.setMapperClass(c);
job.setReducerClass(c);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(IntWritable.class);
JobClient.runJob(job);
base.getFileSystem(job).delete(base, true);
}
示例5: testEmptyJoin
import org.apache.hadoop.mapred.JobClient; //導入依賴的package包/類
public void testEmptyJoin() throws Exception {
JobConf job = new JobConf();
Path base = cluster.getFileSystem().makeQualified(new Path("/empty"));
Path[] src = { new Path(base,"i0"), new Path("i1"), new Path("i2") };
job.set("mapreduce.join.expr", CompositeInputFormat.compose("outer",
Fake_IF.class, src));
job.setInputFormat(CompositeInputFormat.class);
FileOutputFormat.setOutputPath(job, new Path(base, "out"));
job.setMapperClass(IdentityMapper.class);
job.setReducerClass(IdentityReducer.class);
job.setOutputKeyClass(IncomparableKey.class);
job.setOutputValueClass(NullWritable.class);
JobClient.runJob(job);
base.getFileSystem(job).delete(base, true);
}
示例6: configure
import org.apache.hadoop.mapred.JobClient; //導入依賴的package包/類
public void configure(String keySpec, int expect) throws Exception {
Path testdir = new Path(TEST_DIR.getAbsolutePath());
Path inDir = new Path(testdir, "in");
Path outDir = new Path(testdir, "out");
FileSystem fs = getFileSystem();
fs.delete(testdir, true);
conf.setInputFormat(TextInputFormat.class);
FileInputFormat.setInputPaths(conf, inDir);
FileOutputFormat.setOutputPath(conf, outDir);
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(LongWritable.class);
conf.setNumMapTasks(1);
conf.setNumReduceTasks(1);
conf.setOutputFormat(TextOutputFormat.class);
conf.setOutputKeyComparatorClass(KeyFieldBasedComparator.class);
conf.setKeyFieldComparatorOptions(keySpec);
conf.setKeyFieldPartitionerOptions("-k1.1,1.1");
conf.set(JobContext.MAP_OUTPUT_KEY_FIELD_SEPERATOR, " ");
conf.setMapperClass(InverseMapper.class);
conf.setReducerClass(IdentityReducer.class);
if (!fs.mkdirs(testdir)) {
throw new IOException("Mkdirs failed to create " + testdir.toString());
}
if (!fs.mkdirs(inDir)) {
throw new IOException("Mkdirs failed to create " + inDir.toString());
}
// set up input data in 2 files
Path inFile = new Path(inDir, "part0");
FileOutputStream fos = new FileOutputStream(inFile.toString());
fos.write((line1 + "\n").getBytes());
fos.write((line2 + "\n").getBytes());
fos.close();
JobClient jc = new JobClient(conf);
RunningJob r_job = jc.submitJob(conf);
while (!r_job.isComplete()) {
Thread.sleep(1000);
}
if (!r_job.isSuccessful()) {
fail("Oops! The job broke due to an unexpected error");
}
Path[] outputFiles = FileUtil.stat2Paths(
getFileSystem().listStatus(outDir,
new Utils.OutputFileUtils.OutputFilesFilter()));
if (outputFiles.length > 0) {
InputStream is = getFileSystem().open(outputFiles[0]);
BufferedReader reader = new BufferedReader(new InputStreamReader(is));
String line = reader.readLine();
//make sure we get what we expect as the first line, and also
//that we have two lines
if (expect == 1) {
assertTrue(line.startsWith(line1));
} else if (expect == 2) {
assertTrue(line.startsWith(line2));
}
line = reader.readLine();
if (expect == 1) {
assertTrue(line.startsWith(line2));
} else if (expect == 2) {
assertTrue(line.startsWith(line1));
}
reader.close();
}
}
示例7: confRandom
import org.apache.hadoop.mapred.JobClient; //導入依賴的package包/類
/**
* When no input dir is specified, generate random data.
*/
protected static void confRandom(Job job)
throws IOException {
// from RandomWriter
job.setInputFormatClass(RandomInputFormat.class);
job.setMapperClass(RandomMapOutput.class);
Configuration conf = job.getConfiguration();
final ClusterStatus cluster = new JobClient(conf).getClusterStatus();
int numMapsPerHost = conf.getInt(RandomTextWriter.MAPS_PER_HOST, 10);
long numBytesToWritePerMap =
conf.getLong(RandomTextWriter.BYTES_PER_MAP, 1*1024*1024*1024);
if (numBytesToWritePerMap == 0) {
throw new IOException(
"Cannot have " + RandomTextWriter.BYTES_PER_MAP + " set to 0");
}
long totalBytesToWrite = conf.getLong(RandomTextWriter.TOTAL_BYTES,
numMapsPerHost * numBytesToWritePerMap * cluster.getTaskTrackers());
int numMaps = (int)(totalBytesToWrite / numBytesToWritePerMap);
if (numMaps == 0 && totalBytesToWrite > 0) {
numMaps = 1;
conf.setLong(RandomTextWriter.BYTES_PER_MAP, totalBytesToWrite);
}
conf.setInt(MRJobConfig.NUM_MAPS, numMaps);
}
示例8: mrRun
import org.apache.hadoop.mapred.JobClient; //導入依賴的package包/類
private void mrRun() throws Exception {
FileSystem fs = FileSystem.get(getJobConf());
Path inputDir = new Path("input");
fs.mkdirs(inputDir);
Writer writer = new OutputStreamWriter(fs.create(new Path(inputDir, "data.txt")));
writer.write("hello");
writer.close();
Path outputDir = new Path("output", "output");
JobConf jobConf = new JobConf(getJobConf());
jobConf.setInt("mapred.map.tasks", 1);
jobConf.setInt("mapred.map.max.attempts", 1);
jobConf.setInt("mapred.reduce.max.attempts", 1);
jobConf.set("mapred.input.dir", inputDir.toString());
jobConf.set("mapred.output.dir", outputDir.toString());
JobClient jobClient = new JobClient(jobConf);
RunningJob runJob = jobClient.submitJob(jobConf);
runJob.waitForCompletion();
assertTrue(runJob.isComplete());
assertTrue(runJob.isSuccessful());
}
示例9: setReplication
import org.apache.hadoop.mapred.JobClient; //導入依賴的package包/類
/**
* Increase the replication factor of _distcp_src_files to
* sqrt(min(maxMapsOnCluster, numMaps)). This is to reduce the chance of
* failing of distcp because of "not having a replication of _distcp_src_files
* available for reading for some maps".
*/
private static void setReplication(Configuration conf, JobConf jobConf,
Path srcfilelist, int numMaps) throws IOException {
int numMaxMaps = new JobClient(jobConf).getClusterStatus().getMaxMapTasks();
short replication = (short) Math.ceil(
Math.sqrt(Math.min(numMaxMaps, numMaps)));
FileSystem fs = srcfilelist.getFileSystem(conf);
FileStatus srcStatus = fs.getFileStatus(srcfilelist);
if (srcStatus.getReplication() < replication) {
if (!fs.setReplication(srcfilelist, replication)) {
throw new IOException("Unable to increase the replication of file " +
srcfilelist);
}
}
}
示例10: getSplits
import org.apache.hadoop.mapred.JobClient; //導入依賴的package包/類
@Override
public List<InputSplit> getSplits(JobContext jobCtxt) throws IOException {
final JobClient client =
new JobClient(new JobConf(jobCtxt.getConfiguration()));
ClusterStatus stat = client.getClusterStatus(true);
final long toGen =
jobCtxt.getConfiguration().getLong(GRIDMIX_GEN_BYTES, -1);
if (toGen < 0) {
throw new IOException("Invalid/missing generation bytes: " + toGen);
}
final int nTrackers = stat.getTaskTrackers();
final long bytesPerTracker = toGen / nTrackers;
final ArrayList<InputSplit> splits = new ArrayList<InputSplit>(nTrackers);
final Pattern trackerPattern = Pattern.compile("tracker_([^:]*):.*");
final Matcher m = trackerPattern.matcher("");
for (String tracker : stat.getActiveTrackerNames()) {
m.reset(tracker);
if (!m.find()) {
System.err.println("Skipping node: " + tracker);
continue;
}
final String name = m.group(1);
splits.add(new GenSplit(bytesPerTracker, new String[] { name }));
}
return splits;
}
示例11: getSplits
import org.apache.hadoop.mapred.JobClient; //導入依賴的package包/類
@Override
public List<InputSplit> getSplits(JobContext jobCtxt) throws IOException {
final JobConf jobConf = new JobConf(jobCtxt.getConfiguration());
final JobClient client = new JobClient(jobConf);
ClusterStatus stat = client.getClusterStatus(true);
int numTrackers = stat.getTaskTrackers();
final int fileCount = jobConf.getInt(GRIDMIX_DISTCACHE_FILE_COUNT, -1);
// Total size of distributed cache files to be generated
final long totalSize = jobConf.getLong(GRIDMIX_DISTCACHE_BYTE_COUNT, -1);
// Get the path of the special file
String distCacheFileList = jobConf.get(GRIDMIX_DISTCACHE_FILE_LIST);
if (fileCount < 0 || totalSize < 0 || distCacheFileList == null) {
throw new RuntimeException("Invalid metadata: #files (" + fileCount
+ "), total_size (" + totalSize + "), filelisturi ("
+ distCacheFileList + ")");
}
Path sequenceFile = new Path(distCacheFileList);
FileSystem fs = sequenceFile.getFileSystem(jobConf);
FileStatus srcst = fs.getFileStatus(sequenceFile);
// Consider the number of TTs * mapSlotsPerTracker as number of mappers.
int numMapSlotsPerTracker = jobConf.getInt(TTConfig.TT_MAP_SLOTS, 2);
int numSplits = numTrackers * numMapSlotsPerTracker;
List<InputSplit> splits = new ArrayList<InputSplit>(numSplits);
LongWritable key = new LongWritable();
BytesWritable value = new BytesWritable();
// Average size of data to be generated by each map task
final long targetSize = Math.max(totalSize / numSplits,
DistributedCacheEmulator.AVG_BYTES_PER_MAP);
long splitStartPosition = 0L;
long splitEndPosition = 0L;
long acc = 0L;
long bytesRemaining = srcst.getLen();
SequenceFile.Reader reader = null;
try {
reader = new SequenceFile.Reader(fs, sequenceFile, jobConf);
while (reader.next(key, value)) {
// If adding this file would put this split past the target size,
// cut the last split and put this file in the next split.
if (acc + key.get() > targetSize && acc != 0) {
long splitSize = splitEndPosition - splitStartPosition;
splits.add(new FileSplit(
sequenceFile, splitStartPosition, splitSize, (String[])null));
bytesRemaining -= splitSize;
splitStartPosition = splitEndPosition;
acc = 0L;
}
acc += key.get();
splitEndPosition = reader.getPosition();
}
} finally {
if (reader != null) {
reader.close();
}
}
if (bytesRemaining != 0) {
splits.add(new FileSplit(
sequenceFile, splitStartPosition, bytesRemaining, (String[])null));
}
return splits;
}
示例12: runDataGenJob
import org.apache.hadoop.mapred.JobClient; //導入依賴的package包/類
/**
* Runs a GridMix data-generation job.
*/
private static void runDataGenJob(Configuration conf, Path tempDir)
throws IOException, ClassNotFoundException, InterruptedException {
JobClient client = new JobClient(conf);
// get the local job runner
conf.setInt(MRJobConfig.NUM_MAPS, 1);
Job job = Job.getInstance(conf);
CompressionEmulationUtil.configure(job);
job.setInputFormatClass(CustomInputFormat.class);
// set the output path
FileOutputFormat.setOutputPath(job, tempDir);
// submit and wait for completion
job.submit();
int ret = job.waitForCompletion(true) ? 0 : 1;
assertEquals("Job Failed", 0, ret);
}
示例13: runJob
import org.apache.hadoop.mapred.JobClient; //導入依賴的package包/類
/**
* Submit/run a map/reduce job.
*
* @param job
* @return true for success
* @throws IOException
*/
public static boolean runJob(JobConf job) throws IOException {
JobClient jc = new JobClient(job);
boolean sucess = true;
RunningJob running = null;
try {
running = jc.submitJob(job);
JobID jobId = running.getID();
System.out.println("Job " + jobId + " is submitted");
while (!running.isComplete()) {
System.out.println("Job " + jobId + " is still running.");
try {
Thread.sleep(60000);
} catch (InterruptedException e) {
}
running = jc.getJob(jobId);
}
sucess = running.isSuccessful();
} finally {
if (!sucess && (running != null)) {
running.killJob();
}
jc.close();
}
return sucess;
}
示例14: shoudBeValidMapReduceEvaluation
import org.apache.hadoop.mapred.JobClient; //導入依賴的package包/類
@Test
@SuppressWarnings("deprecation")
public void shoudBeValidMapReduceEvaluation() throws Exception {
Configuration cfg = UTIL.getConfiguration();
JobConf jobConf = new JobConf(cfg);
try {
jobConf.setJobName("process row task");
jobConf.setNumReduceTasks(1);
TableMapReduceUtil.initTableMapJob(TABLE_NAME, new String(COLUMN_FAMILY),
ClassificatorMapper.class, ImmutableBytesWritable.class, Put.class,
jobConf);
TableMapReduceUtil.initTableReduceJob(TABLE_NAME,
ClassificatorRowReduce.class, jobConf);
RunningJob job = JobClient.runJob(jobConf);
assertTrue(job.isSuccessful());
} finally {
if (jobConf != null)
FileUtil.fullyDelete(new File(jobConf.get("hadoop.tmp.dir")));
}
}
示例15: shoudBeValidMapReduceWithPartitionerEvaluation
import org.apache.hadoop.mapred.JobClient; //導入依賴的package包/類
@Test
@SuppressWarnings("deprecation")
public void shoudBeValidMapReduceWithPartitionerEvaluation()
throws IOException {
Configuration cfg = UTIL.getConfiguration();
JobConf jobConf = new JobConf(cfg);
try {
jobConf.setJobName("process row task");
jobConf.setNumReduceTasks(2);
TableMapReduceUtil.initTableMapJob(TABLE_NAME, new String(COLUMN_FAMILY),
ClassificatorMapper.class, ImmutableBytesWritable.class, Put.class,
jobConf);
TableMapReduceUtil.initTableReduceJob(TABLE_NAME,
ClassificatorRowReduce.class, jobConf, HRegionPartitioner.class);
RunningJob job = JobClient.runJob(jobConf);
assertTrue(job.isSuccessful());
} finally {
if (jobConf != null)
FileUtil.fullyDelete(new File(jobConf.get("hadoop.tmp.dir")));
}
}