本文整理匯總了Java中org.apache.flink.api.common.operators.base.PartitionOperatorBase.PartitionMethod類的典型用法代碼示例。如果您正苦於以下問題:Java PartitionMethod類的具體用法?Java PartitionMethod怎麽用?Java PartitionMethod使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
PartitionMethod類屬於org.apache.flink.api.common.operators.base.PartitionOperatorBase包,在下文中一共展示了PartitionMethod類的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: PartitionOperator
import org.apache.flink.api.common.operators.base.PartitionOperatorBase.PartitionMethod; //導入依賴的package包/類
private <P> PartitionOperator(DataSet<T> input, PartitionMethod pMethod, Keys<T> pKeys, Partitioner<P> customPartitioner,
TypeInformation<P> partitionerTypeInfo, DataDistribution distribution, String partitionLocationName) {
super(input, input.getType());
Preconditions.checkNotNull(pMethod);
Preconditions.checkArgument(pKeys != null || pMethod == PartitionMethod.REBALANCE, "Partitioning requires keys");
Preconditions.checkArgument(pMethod != PartitionMethod.CUSTOM || customPartitioner != null, "Custom partioning requires a partitioner.");
Preconditions.checkArgument(distribution == null || pMethod == PartitionMethod.RANGE, "Customized data distribution is only neccessary for range partition.");
if (distribution != null) {
Preconditions.checkArgument(pKeys.getNumberOfKeyFields() <= distribution.getNumberOfFields(), "The distribution must provide at least as many fields as flat key fields are specified.");
Preconditions.checkArgument(Arrays.equals(pKeys.getKeyFieldTypes(), Arrays.copyOfRange(distribution.getKeyTypes(), 0, pKeys.getNumberOfKeyFields())),
"The types of the flat key fields must be equal to the types of the fields of the distribution.");
}
if (customPartitioner != null) {
pKeys.validateCustomPartitioner(customPartitioner, partitionerTypeInfo);
}
this.pMethod = pMethod;
this.pKeys = pKeys;
this.partitionLocationName = partitionLocationName;
this.customPartitioner = customPartitioner;
this.distribution = distribution;
}
示例2: translateSelectorFunctionPartitioner
import org.apache.flink.api.common.operators.base.PartitionOperatorBase.PartitionMethod; //導入依賴的package包/類
@SuppressWarnings("unchecked")
private static <T, K> org.apache.flink.api.common.operators.SingleInputOperator<?, T, ?> translateSelectorFunctionPartitioner(
SelectorFunctionKeys<T, ?> rawKeys,
PartitionMethod pMethod,
String name,
Operator<T> input,
int partitionDop,
Partitioner<?> customPartitioner,
Order[] orders) {
final SelectorFunctionKeys<T, K> keys = (SelectorFunctionKeys<T, K>) rawKeys;
TypeInformation<Tuple2<K, T>> typeInfoWithKey = KeyFunctions.createTypeWithKey(keys);
Operator<Tuple2<K, T>> keyedInput = KeyFunctions.appendKeyExtractor(input, keys);
PartitionOperatorBase<Tuple2<K, T>> keyedPartitionedInput =
new PartitionOperatorBase<>(new UnaryOperatorInformation<>(typeInfoWithKey, typeInfoWithKey), pMethod, new int[]{0}, name);
keyedPartitionedInput.setInput(keyedInput);
keyedPartitionedInput.setCustomPartitioner(customPartitioner);
keyedPartitionedInput.setParallelism(partitionDop);
keyedPartitionedInput.setOrdering(new Ordering(0, null, orders != null ? orders[0] : Order.ASCENDING));
return KeyFunctions.appendKeyRemover(keyedPartitionedInput, keys);
}
示例3: PartitionOperator
import org.apache.flink.api.common.operators.base.PartitionOperatorBase.PartitionMethod; //導入依賴的package包/類
public PartitionOperator(DataSet<T> input, PartitionMethod pMethod, Keys<T> pKeys) {
super(input, input.getType());
if(pMethod == PartitionMethod.HASH && pKeys == null) {
throw new IllegalArgumentException("Hash Partitioning requires keys");
} else if(pMethod == PartitionMethod.RANGE) {
throw new UnsupportedOperationException("Range Partitioning not yet supported");
}
if(pKeys instanceof Keys.ExpressionKeys<?> && !(input.getType() instanceof CompositeType) ) {
throw new IllegalArgumentException("Hash Partitioning with key fields only possible on Composite-type DataSets");
}
this.pMethod = pMethod;
this.pKeys = pKeys;
}
示例4: translateSelectorFunctionReducer
import org.apache.flink.api.common.operators.base.PartitionOperatorBase.PartitionMethod; //導入依賴的package包/類
private static <T, K> MapOperatorBase<Tuple2<K, T>, T, ?> translateSelectorFunctionReducer(Keys.SelectorFunctionKeys<T, ?> rawKeys,
PartitionMethod pMethod, TypeInformation<T> inputType, String name, Operator<T> input, int partitionDop)
{
@SuppressWarnings("unchecked")
final Keys.SelectorFunctionKeys<T, K> keys = (Keys.SelectorFunctionKeys<T, K>) rawKeys;
TypeInformation<Tuple2<K, T>> typeInfoWithKey = new TupleTypeInfo<Tuple2<K, T>>(keys.getKeyType(), inputType);
UnaryOperatorInformation<Tuple2<K, T>, Tuple2<K, T>> operatorInfo = new UnaryOperatorInformation<Tuple2<K, T>, Tuple2<K, T>>(typeInfoWithKey, typeInfoWithKey);
KeyExtractingMapper<T, K> extractor = new KeyExtractingMapper<T, K>(keys.getKeyExtractor());
MapOperatorBase<T, Tuple2<K, T>, MapFunction<T, Tuple2<K, T>>> keyExtractingMap = new MapOperatorBase<T, Tuple2<K, T>, MapFunction<T, Tuple2<K, T>>>(extractor, new UnaryOperatorInformation<T, Tuple2<K, T>>(inputType, typeInfoWithKey), "Key Extractor");
PartitionOperatorBase<Tuple2<K, T>> noop = new PartitionOperatorBase<Tuple2<K, T>>(operatorInfo, pMethod, new int[]{0}, name);
MapOperatorBase<Tuple2<K, T>, T, MapFunction<Tuple2<K, T>, T>> keyRemovingMap = new MapOperatorBase<Tuple2<K, T>, T, MapFunction<Tuple2<K, T>, T>>(new KeyRemovingMapper<T, K>(), new UnaryOperatorInformation<Tuple2<K, T>, T>(typeInfoWithKey, inputType), "Key Extractor");
keyExtractingMap.setInput(input);
noop.setInput(keyExtractingMap);
keyRemovingMap.setInput(noop);
// set dop
keyExtractingMap.setDegreeOfParallelism(input.getDegreeOfParallelism());
noop.setDegreeOfParallelism(partitionDop);
keyRemovingMap.setDegreeOfParallelism(partitionDop);
return keyRemovingMap;
}
示例5: withOrders
import org.apache.flink.api.common.operators.base.PartitionOperatorBase.PartitionMethod; //導入依賴的package包/類
/**
* Sets the order of keys for range partitioning.
* NOTE: Only valid for {@link PartitionMethod#RANGE}.
*
* @param orders array of orders for each specified partition key
* @return The partitioneOperator with properly set orders for given keys
*/
@PublicEvolving
public PartitionOperator<T> withOrders(Order... orders) {
Preconditions.checkState(pMethod == PartitionMethod.RANGE, "Orders cannot be applied for %s partition " +
"method", pMethod);
Preconditions.checkArgument(pKeys.getOriginalKeyFieldTypes().length == orders.length, "The number of key " +
"fields and orders should be the same.");
this.orders = orders;
return this;
}
示例6: PartitionDescriptor
import org.apache.flink.api.common.operators.base.PartitionOperatorBase.PartitionMethod; //導入依賴的package包/類
public PartitionDescriptor(PartitionMethod pMethod, FieldSet pKeys, Ordering ordering, Partitioner<?>
customPartitioner, DataDistribution distribution) {
super(pKeys);
Preconditions.checkArgument(pMethod != PartitionMethod.RANGE
|| pKeys.equals(new FieldSet(ordering.getFieldPositions())),
"Partition keys must match the given ordering.");
this.pMethod = pMethod;
this.customPartitioner = customPartitioner;
this.distribution = distribution;
this.ordering = ordering;
}
示例7: PartitionDescriptor
import org.apache.flink.api.common.operators.base.PartitionOperatorBase.PartitionMethod; //導入依賴的package包/類
public PartitionDescriptor(PartitionMethod pMethod, FieldSet pKeys) {
this.pMethod = pMethod;
this.pKeys = pKeys;
}
示例8: partitionByHash
import org.apache.flink.api.common.operators.base.PartitionOperatorBase.PartitionMethod; //導入依賴的package包/類
/**
* Hash-partitions a DataSet on the specified key fields.
*
* <p><b>Important:</b>This operation shuffles the whole DataSet over the network and can take significant amount of time.
*
* @param fields The field indexes on which the DataSet is hash-partitioned.
* @return The partitioned DataSet.
*/
public PartitionOperator<T> partitionByHash(int... fields) {
return new PartitionOperator<>(this, PartitionMethod.HASH, new Keys.ExpressionKeys<>(fields, getType()), Utils.getCallLocationName());
}
示例9: partitionByRange
import org.apache.flink.api.common.operators.base.PartitionOperatorBase.PartitionMethod; //導入依賴的package包/類
/**
* Range-partitions a DataSet on the specified key fields.
*
* <p><b>Important:</b>This operation requires an extra pass over the DataSet to compute the range boundaries and
* shuffles the whole DataSet over the network. This can take significant amount of time.
*
* @param fields The field indexes on which the DataSet is range-partitioned.
* @return The partitioned DataSet.
*/
public PartitionOperator<T> partitionByRange(int... fields) {
return new PartitionOperator<>(this, PartitionMethod.RANGE, new Keys.ExpressionKeys<>(fields, getType()), Utils.getCallLocationName());
}
示例10: rebalance
import org.apache.flink.api.common.operators.base.PartitionOperatorBase.PartitionMethod; //導入依賴的package包/類
/**
* Enforces a re-balancing of the DataSet, i.e., the DataSet is evenly distributed over all parallel instances of the
* following task. This can help to improve performance in case of heavy data skew and compute intensive operations.
*
* <p><b>Important:</b>This operation shuffles the whole DataSet over the network and can take significant amount of time.
*
* @return The re-balanced DataSet.
*/
public PartitionOperator<T> rebalance() {
return new PartitionOperator<>(this, PartitionMethod.REBALANCE, Utils.getCallLocationName());
}
示例11: partitionByHash
import org.apache.flink.api.common.operators.base.PartitionOperatorBase.PartitionMethod; //導入依賴的package包/類
/**
* Hash-partitions a DataSet on the specified key fields.
* <p>
* <b>Important:</b>This operation shuffles the whole DataSet over the network and can take significant amount of time.
*
* @param fields The field indexes on which the DataSet is hash-partitioned.
* @return The partitioned DataSet.
*/
public PartitionOperator<T> partitionByHash(int... fields) {
return new PartitionOperator<T>(this, PartitionMethod.HASH, new Keys.ExpressionKeys<T>(fields, getType(), false));
}
示例12: rebalance
import org.apache.flink.api.common.operators.base.PartitionOperatorBase.PartitionMethod; //導入依賴的package包/類
/**
* Enforces a rebalancing of the DataSet, i.e., the DataSet is evenly distributed over all parallel instances of the
* following task. This can help to improve performance in case of heavy data skew and compute intensive operations.
* <p>
* <b>Important:</b>This operation shuffles the whole DataSet over the network and can take significant amount of time.
*
* @return The rebalanced DataSet.
*/
public PartitionOperator<T> rebalance() {
return new PartitionOperator<T>(this, PartitionMethod.REBALANCE);
}