當前位置: 首頁>>代碼示例>>Java>>正文


Java EstimationType類代碼示例

本文整理匯總了Java中org.apache.commons.math3.stat.descriptive.rank.Percentile.EstimationType的典型用法代碼示例。如果您正苦於以下問題:Java EstimationType類的具體用法?Java EstimationType怎麽用?Java EstimationType使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


EstimationType類屬於org.apache.commons.math3.stat.descriptive.rank.Percentile包,在下文中一共展示了EstimationType類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: testAllTechniquesSingleton

import org.apache.commons.math3.stat.descriptive.rank.Percentile.EstimationType; //導入依賴的package包/類
@Test
public void testAllTechniquesSingleton() {
    double[] singletonArray = new double[] { 1d };
    for (EstimationType e : EstimationType.values()) {
        UnivariateStatistic percentile = getTestMedian(e);
        Assert.assertEquals(1d, percentile.evaluate(singletonArray), 0);
        Assert.assertEquals(1d, percentile.evaluate(singletonArray, 0, 1),
                0);
        Assert.assertEquals(1d,
                new Median().evaluate(singletonArray, 0, 1, 5), 0);
        Assert.assertEquals(1d,
                new Median().evaluate(singletonArray, 0, 1, 100), 0);
        Assert.assertTrue(Double.isNaN(percentile.evaluate(singletonArray,
                0, 0)));
    }
}
 
開發者ID:Quanticol,項目名稱:CARMA,代碼行數:17,代碼來源:MedianTest.java

示例2: testAllTechniquesNISTExample

import org.apache.commons.math3.stat.descriptive.rank.Percentile.EstimationType; //導入依賴的package包/類
@Test
public void testAllTechniquesNISTExample() {
    final double[] d =
            new double[] { 95.1772, 95.1567, 95.1937, 95.1959, 95.1442,
                    95.0610, 95.1591, 95.1195, 95.1772, 95.0925, 95.1990,
                    95.1682 };

    testAssertMappedValues(d, new Object[][] { { Percentile.EstimationType.LEGACY, 95.1981 },
            { Percentile.EstimationType.R_1, 95.19590 }, { Percentile.EstimationType.R_2, 95.19590 }, { Percentile.EstimationType.R_3, 95.19590 },
            { Percentile.EstimationType.R_4, 95.19546 }, { Percentile.EstimationType.R_5, 95.19683 }, { Percentile.EstimationType.R_6, 95.19807 },
            { Percentile.EstimationType.R_7, 95.19568 }, { Percentile.EstimationType.R_8, 95.19724 }, { Percentile.EstimationType.R_9, 95.19714 } }, 90d,
            1.0e-04);

    for (final Percentile.EstimationType e : Percentile.EstimationType.values()) {
        reset(100.0, e);
        Assert.assertEquals(95.1990, getUnivariateStatistic().evaluate(d), 1.0e-4);
    }
}
 
開發者ID:Quanticol,項目名稱:CARMA,代碼行數:19,代碼來源:PercentileTest.java

示例3: testAllTechniquesNullEmpty

import org.apache.commons.math3.stat.descriptive.rank.Percentile.EstimationType; //導入依賴的package包/類
@Test
public void testAllTechniquesNullEmpty() {

    final double[] nullArray = null;
    final double[] emptyArray = new double[] {};
    for (final Percentile.EstimationType e : Percentile.EstimationType.values()) {
        reset (50, e);
        final UnivariateStatistic percentile = getUnivariateStatistic();
        try {
            percentile.evaluate(nullArray);
            Assert.fail("Expecting MathIllegalArgumentException "
                    + "for null array");
        } catch (final MathIllegalArgumentException ex) {
            // expected
        }
        Assert.assertTrue(Double.isNaN(percentile.evaluate(emptyArray)));
    }

}
 
開發者ID:Quanticol,項目名稱:CARMA,代碼行數:20,代碼來源:PercentileTest.java

示例4: testAllTechniquesSingleton

import org.apache.commons.math3.stat.descriptive.rank.Percentile.EstimationType; //導入依賴的package包/類
@Test
public void testAllTechniquesSingleton() {
    final double[] singletonArray = new double[] { 1d };
    for (final Percentile.EstimationType e : Percentile.EstimationType.values()) {
        reset (50, e);
        final UnivariateStatistic percentile = getUnivariateStatistic();
        Assert.assertEquals(1d, percentile.evaluate(singletonArray), 0);
        Assert.assertEquals(1d, percentile.evaluate(singletonArray, 0, 1),
                0);
        Assert.assertEquals(1d,
                new Percentile().evaluate(singletonArray, 0, 1, 5), 0);
        Assert.assertEquals(1d,
                new Percentile().evaluate(singletonArray, 0, 1, 100), 0);
        Assert.assertTrue(Double.isNaN(percentile.evaluate(singletonArray,
                0, 0)));
    }
}
 
開發者ID:Quanticol,項目名稱:CARMA,代碼行數:18,代碼來源:PercentileTest.java

示例5: testAllTechniquesEmpty

import org.apache.commons.math3.stat.descriptive.rank.Percentile.EstimationType; //導入依賴的package包/類
@Test
public void testAllTechniquesEmpty() {
    final double[] singletonArray = new double[] { };
    for (final Percentile.EstimationType e : Percentile.EstimationType.values()) {
        reset (50, e);
        final UnivariateStatistic percentile = getUnivariateStatistic();
        Assert.assertEquals(Double.NaN, percentile.evaluate(singletonArray),
                0);
        Assert.assertEquals(Double.NaN, percentile.evaluate(singletonArray,
                0, 0),
                0);
        Assert.assertEquals(Double.NaN,
                new Percentile().evaluate(singletonArray, 0, 0, 5), 0);
        Assert.assertEquals(Double.NaN,
                new Percentile().evaluate(singletonArray, 0, 0, 100), 0);
        Assert.assertTrue(Double.isNaN(percentile.evaluate(singletonArray,
                0, 0)));
    }
}
 
開發者ID:Quanticol,項目名稱:CARMA,代碼行數:20,代碼來源:PercentileTest.java

示例6: testRemoveNan

import org.apache.commons.math3.stat.descriptive.rank.Percentile.EstimationType; //導入依賴的package包/類
@Test
public void testRemoveNan() {
    final double[] specialValues =
            new double[] { 0d, 1d, 2d, 3d, 4d, Double.NaN };
    final double[] expectedValues =
            new double[] { 0d, 1d, 2d, 3d, 4d };
    reset (50, Percentile.EstimationType.R_1);
    Assert.assertEquals(2.0, getUnivariateStatistic().evaluate(specialValues), 0d);
    Assert.assertEquals(2.0, getUnivariateStatistic().evaluate(expectedValues),0d);
    Assert.assertTrue(Double.isNaN(getUnivariateStatistic().evaluate(specialValues,5,1)));
    Assert.assertEquals(4d, getUnivariateStatistic().evaluate(specialValues, 4, 2), 0d);
    Assert.assertEquals(3d, getUnivariateStatistic().evaluate(specialValues,3,3),0d);
    reset(50, Percentile.EstimationType.R_2);
    Assert.assertEquals(3.5d, getUnivariateStatistic().evaluate(specialValues,3,3),0d);

}
 
開發者ID:Quanticol,項目名稱:CARMA,代碼行數:17,代碼來源:PercentileTest.java

示例7: testStoredVsDirect

import org.apache.commons.math3.stat.descriptive.rank.Percentile.EstimationType; //導入依賴的package包/類
@Test
public void testStoredVsDirect() {
    final RandomGenerator rand= new JDKRandomGenerator();
    rand.setSeed(Long.MAX_VALUE);
    for (final int sampleSize:sampleSizes) {
        final double[] data = new NormalDistribution(rand,4000, 50)
                            .sample(sampleSize);
        for (final double p:new double[] {50d,95d}) {
            for (final Percentile.EstimationType e : Percentile.EstimationType.values()) {
                reset(p, e);
                final Percentile pStoredData = getUnivariateStatistic();
                pStoredData.setData(data);
                final double storedDataResult=pStoredData.evaluate();
                pStoredData.setData(null);
                final Percentile pDirect = getUnivariateStatistic();
                Assert.assertEquals("Sample="+sampleSize+",P="+p+" e="+e,
                        storedDataResult,
                        pDirect.evaluate(data),0d);
            }
        }
    }
}
 
開發者ID:Quanticol,項目名稱:CARMA,代碼行數:23,代碼來源:PercentileTest.java

示例8: testAllEstimationTechniquesOnlyForExtremeIndexes

import org.apache.commons.math3.stat.descriptive.rank.Percentile.EstimationType; //導入依賴的package包/類
@Test
public void testAllEstimationTechniquesOnlyForExtremeIndexes() {
    final double MAX=100;
    final Object[][] map =
            new Object[][] { { Percentile.EstimationType.LEGACY, 0d, MAX}, { Percentile.EstimationType.R_1, 0d,MAX+0.5 },
            { Percentile.EstimationType.R_2, 0d,MAX}, { Percentile.EstimationType.R_3, 0d,MAX }, { Percentile.EstimationType.R_4, 0d,MAX },
            { Percentile.EstimationType.R_5, 0d,MAX }, { Percentile.EstimationType.R_6, 0d,MAX },
            { Percentile.EstimationType.R_7, 0d,MAX }, { Percentile.EstimationType.R_8, 0d,MAX }, { Percentile.EstimationType.R_9, 0d,MAX }  };
    for (final Object[] o : map) {
        final Percentile.EstimationType e = (Percentile.EstimationType) o[0];
            Assert.assertEquals(((Double)o[1]).doubleValue(),
                    e.index(0d, (int)MAX),0d);
            Assert.assertEquals("Enum:"+e,((Double)o[2]).doubleValue(),
                    e.index(1.0, (int)MAX),0d);
        }
}
 
開發者ID:Quanticol,項目名稱:CARMA,代碼行數:17,代碼來源:PercentileTest.java

示例9: testAllEstimationTechniquesOnlyForNullsAndOOR

import org.apache.commons.math3.stat.descriptive.rank.Percentile.EstimationType; //導入依賴的package包/類
@Test
public void testAllEstimationTechniquesOnlyForNullsAndOOR() {

    final Object[][] map =
            new Object[][] { { Percentile.EstimationType.LEGACY, 20.82 }, { Percentile.EstimationType.R_1, 19.8 },
                    { Percentile.EstimationType.R_2, 19.8 }, { Percentile.EstimationType.R_3, 19.8 }, { Percentile.EstimationType.R_4, 19.310 },
                    { Percentile.EstimationType.R_5, 20.280}, { Percentile.EstimationType.R_6, 20.820},
                    { Percentile.EstimationType.R_7, 19.555 }, { Percentile.EstimationType.R_8, 20.460 },{ Percentile.EstimationType.R_9, 20.415 } };
    for (final Object[] o : map) {
        final Percentile.EstimationType e = (Percentile.EstimationType) o[0];
        try {
            e.evaluate(null, DEFAULT_PERCENTILE, new KthSelector());
            Assert.fail("Expecting NullArgumentException");
        } catch (final NullArgumentException nae) {
            // expected
        }
        try {
            e.evaluate(testArray, 120, new KthSelector());
            Assert.fail("Expecting OutOfRangeException");
        } catch (final OutOfRangeException oore) {
            // expected
        }
    }
}
 
開發者ID:Quanticol,項目名稱:CARMA,代碼行數:25,代碼來源:PercentileTest.java

示例10: testAssertMappedValues

import org.apache.commons.math3.stat.descriptive.rank.Percentile.EstimationType; //導入依賴的package包/類
/**
 * Simple test assertion utility method assuming {@link NaNStrategy default}
 * nan handling strategy specific to each {@link EstimationType type}
 *
 * @param data input data
 * @param map of expected result against a {@link EstimationType}
 * @param p the quantile to compute for
 * @param tolerance the tolerance of difference allowed
 */
protected void testAssertMappedValues(final double[] data, final Object[][] map,
        final Double p, final Double tolerance) {
    for (final Object[] o : map) {
        final Percentile.EstimationType e = (Percentile.EstimationType) o[0];
        final double expected = (Double) o[1];
        try {
            reset(p, e);
            final double result = getUnivariateStatistic().evaluate(data);
            Assert.assertEquals("expected[" + e + "] = " + expected +
                " but was = " + result, expected, result, tolerance);
        } catch(final Exception ex) {
            Assert.fail("Exception occured for estimation type "+e+":"+
                    ex.getLocalizedMessage());
        }
    }
}
 
開發者ID:Quanticol,項目名稱:CARMA,代碼行數:26,代碼來源:PercentileTest.java

示例11: testNanStrategySpecific

import org.apache.commons.math3.stat.descriptive.rank.Percentile.EstimationType; //導入依賴的package包/類
@Test
public void testNanStrategySpecific() {
    double[] specialValues = new double[] { 0d, 1d, 2d, 3d, 4d, Double.NaN };
    Assert.assertTrue(Double.isNaN(new Percentile(50d).withEstimationType(Percentile.EstimationType.LEGACY).withNaNStrategy(NaNStrategy.MAXIMAL).evaluate(specialValues, 3, 3)));
    Assert.assertEquals(2d,new Percentile(50d).withEstimationType(Percentile.EstimationType.R_1).withNaNStrategy(NaNStrategy.REMOVED).evaluate(specialValues),0d);
    Assert.assertEquals(Double.NaN,new Percentile(50d).withEstimationType(Percentile.EstimationType.R_5).withNaNStrategy(NaNStrategy.REMOVED).evaluate(new double[] {Double.NaN,Double.NaN,Double.NaN}),0d);
    Assert.assertEquals(50d,new Percentile(50d).withEstimationType(Percentile.EstimationType.R_7).withNaNStrategy(NaNStrategy.MINIMAL).evaluate(new double[] {50d,50d,50d},1,2),0d);
    
    specialValues = new double[] { 0d, 1d, 2d, 3d, 4d, Double.NaN, Double.NaN };
    Assert.assertEquals(3.5,new Percentile().evaluate(specialValues, 3, 4),0d);
    Assert.assertEquals(4d,new Percentile().evaluate(specialValues, 4, 3),0d);
    Assert.assertTrue(Double.isNaN(new Percentile().evaluate(specialValues, 5, 2)));
    
    specialValues = new double[] { 0d, 1d, 2d, 3d, 4d, Double.NaN, Double.NaN, 5d, 6d };
    Assert.assertEquals(4.5,new Percentile().evaluate(specialValues, 3, 6),0d);
    Assert.assertEquals(5d,new Percentile().evaluate(specialValues, 4, 5),0d);
    Assert.assertTrue(Double.isNaN(new Percentile().evaluate(specialValues, 5, 2)));
    Assert.assertTrue(Double.isNaN(new Percentile().evaluate(specialValues, 5, 1)));
    Assert.assertEquals(5.5,new Percentile().evaluate(specialValues, 5, 4),0d);
}
 
開發者ID:Quanticol,項目名稱:CARMA,代碼行數:21,代碼來源:PercentileTest.java

示例12: testAssertMappedValues

import org.apache.commons.math3.stat.descriptive.rank.Percentile.EstimationType; //導入依賴的package包/類
/**
 * Simple test assertion utility method
 *
 * @param d input data
 * @param map of expected result against a {@link EstimationType}
 * @param tolerance the tolerance of difference allowed
 */
protected void testAssertMappedValues(double[] d, Object[][] map,
        Double tolerance) {
    for (Object[] o : map) {
        EstimationType e = (EstimationType) o[0];
        double expected = (Double) o[1];
        double result = getTestMedian(e).evaluate(d);
        Assert.assertEquals("expected[" + e + "] = " + expected +
                " but was = " + result, expected, result, tolerance);
    }
}
 
開發者ID:Quanticol,項目名稱:CARMA,代碼行數:18,代碼來源:MedianTest.java

示例13: before

import org.apache.commons.math3.stat.descriptive.rank.Percentile.EstimationType; //導入依賴的package包/類
/**
 * Before method to ensure defaults retained
 */
@Before
public void before() {
    quantile         = 95.0;
    type             = Percentile.EstimationType.LEGACY;
    nanStrategy      = NaNStrategy.REMOVED;
    kthSelector      = new KthSelector(new MedianOf3PivotingStrategy());
}
 
開發者ID:Quanticol,項目名稱:CARMA,代碼行數:11,代碼來源:PercentileTest.java

示例14: testAllTechniquesHighPercentile

import org.apache.commons.math3.stat.descriptive.rank.Percentile.EstimationType; //導入依賴的package包/類
/**
 * While {@link #testHighPercentile()} checks only for the existing
 * implementation; this method verifies for all the types including Percentile.Type.CM Percentile.Type.
 */
@Test
public void testAllTechniquesHighPercentile() {
    final double[] d = new double[] { 1, 2, 3 };
    testAssertMappedValues(d, new Object[][] { { Percentile.EstimationType.LEGACY, 3d }, { Percentile.EstimationType.R_1, 3d },
            { Percentile.EstimationType.R_2, 3d }, { Percentile.EstimationType.R_3, 2d }, { Percentile.EstimationType.R_4, 2.25 }, { Percentile.EstimationType.R_5, 2.75 },
            { Percentile.EstimationType.R_6, 3d }, { Percentile.EstimationType.R_7, 2.5 },{ Percentile.EstimationType.R_8, 2.83333 }, {Percentile.EstimationType.R_9,2.81250} },
            75d, 1.0e-5);
}
 
開發者ID:Quanticol,項目名稱:CARMA,代碼行數:13,代碼來源:PercentileTest.java

示例15: testAllTechniquesLowPercentile

import org.apache.commons.math3.stat.descriptive.rank.Percentile.EstimationType; //導入依賴的package包/類
@Test
public void testAllTechniquesLowPercentile() {
    final double[] d = new double[] { 0, 1 };
    testAssertMappedValues(d, new Object[][] { { Percentile.EstimationType.LEGACY, 0d }, { Percentile.EstimationType.R_1, 0d },
            { Percentile.EstimationType.R_2, 0d }, { Percentile.EstimationType.R_3, 0d }, { Percentile.EstimationType.R_4, 0d }, {Percentile.EstimationType.R_5, 0d}, {Percentile.EstimationType.R_6, 0d},
            { Percentile.EstimationType.R_7, 0.25 }, { Percentile.EstimationType.R_8, 0d }, {Percentile.EstimationType.R_9, 0d} },
            25d, Double.MIN_VALUE);
}
 
開發者ID:Quanticol,項目名稱:CARMA,代碼行數:9,代碼來源:PercentileTest.java


注:本文中的org.apache.commons.math3.stat.descriptive.rank.Percentile.EstimationType類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。