本文整理匯總了Java中org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm類的典型用法代碼示例。如果您正苦於以下問題:Java PolynomialFunctionLagrangeForm類的具體用法?Java PolynomialFunctionLagrangeForm怎麽用?Java PolynomialFunctionLagrangeForm使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
PolynomialFunctionLagrangeForm類屬於org.apache.commons.math.analysis.polynomials包,在下文中一共展示了PolynomialFunctionLagrangeForm類的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: unwrap
import org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm; //導入依賴的package包/類
/**
* @param lagrange A Commons polynomial in Lagrange form, not null
* @return An OG 1-D function mapping doubles to doubles
*/
public static Function1D<Double, Double> unwrap(final PolynomialFunctionLagrangeForm lagrange) {
Validate.notNull(lagrange);
return new Function1D<Double, Double>() {
@Override
public Double evaluate(final Double x) {
try {
return lagrange.value(x);
} catch (final org.apache.commons.math.MathException e) {
throw new MathException(e);
}
}
};
}
示例2: interpolate
import org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm; //導入依賴的package包/類
/**
* Computes an interpolating function for the data set.
*
* @param x the interpolating points array
* @param y the interpolating values array
* @return a function which interpolates the data set
* @throws DuplicateSampleAbscissaException if arguments are invalid
*/
public PolynomialFunctionNewtonForm interpolate(double x[], double y[]) throws
DuplicateSampleAbscissaException {
/**
* a[] and c[] are defined in the general formula of Newton form:
* p(x) = a[0] + a[1](x-c[0]) + a[2](x-c[0])(x-c[1]) + ... +
* a[n](x-c[0])(x-c[1])...(x-c[n-1])
*/
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y);
/**
* When used for interpolation, the Newton form formula becomes
* p(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + ... +
* f[x0,x1,...,x[n-1]](x-x0)(x-x1)...(x-x[n-2])
* Therefore, a[k] = f[x0,x1,...,xk], c[k] = x[k].
* <p>
* Note x[], y[], a[] have the same length but c[]'s size is one less.</p>
*/
final double[] c = new double[x.length-1];
System.arraycopy(x, 0, c, 0, c.length);
final double[] a = computeDividedDifference(x, y);
return new PolynomialFunctionNewtonForm(a, c);
}
示例3: computeDividedDifference
import org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm; //導入依賴的package包/類
/**
* Returns a copy of the divided difference array.
* <p>
* The divided difference array is defined recursively by <pre>
* f[x0] = f(x0)
* f[x0,x1,...,xk] = (f(x1,...,xk) - f(x0,...,x[k-1])) / (xk - x0)
* </pre></p>
* <p>
* The computational complexity is O(N^2).</p>
*
* @param x the interpolating points array
* @param y the interpolating values array
* @return a fresh copy of the divided difference array
* @throws DuplicateSampleAbscissaException if any abscissas coincide
*/
protected static double[] computeDividedDifference(final double x[], final double y[])
throws DuplicateSampleAbscissaException {
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y);
final double[] divdiff = y.clone(); // initialization
final int n = x.length;
final double[] a = new double [n];
a[0] = divdiff[0];
for (int i = 1; i < n; i++) {
for (int j = 0; j < n-i; j++) {
final double denominator = x[j+i] - x[j];
if (denominator == 0.0) {
// This happens only when two abscissas are identical.
throw new DuplicateSampleAbscissaException(x[j], j, j+i);
}
divdiff[j] = (divdiff[j+1] - divdiff[j]) / denominator;
}
a[i] = divdiff[0];
}
return a;
}
示例4: interpolate
import org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm; //導入依賴的package包/類
/**
* Compute an interpolating function for the dataset.
*
* @param x Interpolating points array.
* @param y Interpolating values array.
* @return a function which interpolates the dataset.
* @throws org.apache.commons.math.exception.DimensionMismatchException
* if the array lengths are different.
* @throws org.apache.commons.math.exception.NumberIsTooSmallException
* if the number of points is less than 2.
* @throws org.apache.commons.math.exception.NonMonotonousSequenceException
* if {@code x} is not sorted in strictly increasing order.
*/
public PolynomialFunctionNewtonForm interpolate(double x[], double y[]) {
/**
* a[] and c[] are defined in the general formula of Newton form:
* p(x) = a[0] + a[1](x-c[0]) + a[2](x-c[0])(x-c[1]) + ... +
* a[n](x-c[0])(x-c[1])...(x-c[n-1])
*/
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y, true);
/**
* When used for interpolation, the Newton form formula becomes
* p(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + ... +
* f[x0,x1,...,x[n-1]](x-x0)(x-x1)...(x-x[n-2])
* Therefore, a[k] = f[x0,x1,...,xk], c[k] = x[k].
* <p>
* Note x[], y[], a[] have the same length but c[]'s size is one less.</p>
*/
final double[] c = new double[x.length-1];
System.arraycopy(x, 0, c, 0, c.length);
final double[] a = computeDividedDifference(x, y);
return new PolynomialFunctionNewtonForm(a, c);
}
示例5: interpolate
import org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm; //導入依賴的package包/類
@Override
public Double interpolate(final Interpolator1DDataBundle data, final Double value) {
Validate.notNull(value, "value");
Validate.notNull(data, "data bundle");
final int n = data.size();
final double[] keys = data.getKeys();
final double[] values = data.getValues();
if (n <= _degree) {
throw new MathException("Need at least " + (_degree + 1) + " data points to perform polynomial interpolation of degree " + _degree);
}
if (data.getLowerBoundIndex(value) == n - 1) {
return values[n - 1];
}
final int lower = data.getLowerBoundIndex(value);
final int lowerBound = lower - _offset;
final int upperBound = _degree + 1 + lowerBound;
if (lowerBound < 0) {
throw new MathException("Could not get lower bound: index " + lowerBound + " must be greater than or equal to zero");
}
if (upperBound > n + 1) {
throw new MathException("Could not get upper bound: index " + upperBound + " must be less than or equal to " + (n + 1));
}
final double[] x = Arrays.copyOfRange(keys, lowerBound, upperBound);
final double[] y = Arrays.copyOfRange(values, lowerBound, upperBound);
try {
final PolynomialFunctionLagrangeForm lagrange = _interpolator.interpolate(x, y);
return CommonsMathWrapper.unwrap(lagrange).evaluate(value);
} catch (final org.apache.commons.math.MathException e) {
throw new MathException(e);
}
}
示例6: testLagrange
import org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm; //導入依賴的package包/類
@Test
public void testLagrange() {
final int n = OG_POLYNOMIAL.getCoefficients().length;
final double[] x = new double[n];
final double[] y = new double[n];
for (int i = 0; i < n; i++) {
x[i] = i;
y[i] = OG_POLYNOMIAL.evaluate(x[i]);
}
final Function1D<Double, Double> unwrapped = CommonsMathWrapper.unwrap(new PolynomialFunctionLagrangeForm(x, y));
for (int i = 0; i < 100; i++) {
assertEquals(unwrapped.evaluate(i + 0.5), OG_POLYNOMIAL.evaluate(i + 0.5), 1e-9);
}
}
示例7: interpolate
import org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm; //導入依賴的package包/類
/**
* Computes an interpolating function for the data set.
*
* @param x the interpolating points array
* @param y the interpolating values array
* @return a function which interpolates the data set
* @throws DuplicateSampleAbscissaException if arguments are invalid
*/
public UnivariateRealFunction interpolate(double x[], double y[]) throws
DuplicateSampleAbscissaException {
/**
* a[] and c[] are defined in the general formula of Newton form:
* p(x) = a[0] + a[1](x-c[0]) + a[2](x-c[0])(x-c[1]) + ... +
* a[n](x-c[0])(x-c[1])...(x-c[n-1])
*/
double a[], c[];
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y);
/**
* When used for interpolation, the Newton form formula becomes
* p(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + ... +
* f[x0,x1,...,x[n-1]](x-x0)(x-x1)...(x-x[n-2])
* Therefore, a[k] = f[x0,x1,...,xk], c[k] = x[k].
* <p>
* Note x[], y[], a[] have the same length but c[]'s size is one less.</p>
*/
c = new double[x.length-1];
for (int i = 0; i < c.length; i++) {
c[i] = x[i];
}
a = computeDividedDifference(x, y);
PolynomialFunctionNewtonForm p;
p = new PolynomialFunctionNewtonForm(a, c);
return p;
}
示例8: computeDividedDifference
import org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm; //導入依賴的package包/類
/**
* Returns a copy of the divided difference array.
* <p>
* The divided difference array is defined recursively by <pre>
* f[x0] = f(x0)
* f[x0,x1,...,xk] = (f(x1,...,xk) - f(x0,...,x[k-1])) / (xk - x0)
* </pre></p>
* <p>
* The computational complexity is O(N^2).</p>
*
* @param x the interpolating points array
* @param y the interpolating values array
* @return a fresh copy of the divided difference array
* @throws DuplicateSampleAbscissaException if any abscissas coincide
*/
protected static double[] computeDividedDifference(double x[], double y[])
throws DuplicateSampleAbscissaException {
int i, j, n;
double divdiff[], a[], denominator;
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y);
n = x.length;
divdiff = new double[n];
for (i = 0; i < n; i++) {
divdiff[i] = y[i]; // initialization
}
a = new double [n];
a[0] = divdiff[0];
for (i = 1; i < n; i++) {
for (j = 0; j < n-i; j++) {
denominator = x[j+i] - x[j];
if (denominator == 0.0) {
// This happens only when two abscissas are identical.
throw new DuplicateSampleAbscissaException(x[j], j, j+i);
}
divdiff[j] = (divdiff[j+1] - divdiff[j]) / denominator;
}
a[i] = divdiff[0];
}
return a;
}
示例9: interpolate
import org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm; //導入依賴的package包/類
/**
* Computes an interpolating function for the data set.
*
* @param x the interpolating points array
* @param y the interpolating values array
* @return a function which interpolates the data set
* @throws DuplicateSampleAbscissaException if arguments are invalid
*/
public PolynomialFunctionNewtonForm interpolate(double x[], double y[]) throws
DuplicateSampleAbscissaException {
/**
* a[] and c[] are defined in the general formula of Newton form:
* p(x) = a[0] + a[1](x-c[0]) + a[2](x-c[0])(x-c[1]) + ... +
* a[n](x-c[0])(x-c[1])...(x-c[n-1])
*/
double a[], c[];
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y);
/**
* When used for interpolation, the Newton form formula becomes
* p(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + ... +
* f[x0,x1,...,x[n-1]](x-x0)(x-x1)...(x-x[n-2])
* Therefore, a[k] = f[x0,x1,...,xk], c[k] = x[k].
* <p>
* Note x[], y[], a[] have the same length but c[]'s size is one less.</p>
*/
c = new double[x.length-1];
for (int i = 0; i < c.length; i++) {
c[i] = x[i];
}
a = computeDividedDifference(x, y);
return new PolynomialFunctionNewtonForm(a, c);
}
示例10: testNullLagrange
import org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm; //導入依賴的package包/類
@Test(expectedExceptions = IllegalArgumentException.class)
public void testNullLagrange() {
CommonsMathWrapper.unwrap((PolynomialFunctionLagrangeForm) null);
}
示例11: computeDividedDifference
import org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm; //導入依賴的package包/類
/**
* Return a copy of the divided difference array.
* <p>
* The divided difference array is defined recursively by <pre>
* f[x0] = f(x0)
* f[x0,x1,...,xk] = (f(x1,...,xk) - f(x0,...,x[k-1])) / (xk - x0)
* </pre></p>
* <p>
* The computational complexity is O(N^2).</p>
*
* @param x Interpolating points array.
* @param y Interpolating values array.
* @return a fresh copy of the divided difference array.
* @throws org.apache.commons.math.exception.DimensionMismatchException
* if the array lengths are different.
* @throws org.apache.commons.math.exception.NumberIsTooSmallException
* if the number of points is less than 2.
* @throws org.apache.commons.math.exception.NonMonotonousSequenceException
* if {@code x} is not sorted in strictly increasing order.
*/
protected static double[] computeDividedDifference(final double x[], final double y[]) {
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y, true);
final double[] divdiff = y.clone(); // initialization
final int n = x.length;
final double[] a = new double [n];
a[0] = divdiff[0];
for (int i = 1; i < n; i++) {
for (int j = 0; j < n-i; j++) {
final double denominator = x[j+i] - x[j];
divdiff[j] = (divdiff[j+1] - divdiff[j]) / denominator;
}
a[i] = divdiff[0];
}
return a;
}
示例12: computeDividedDifference
import org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm; //導入依賴的package包/類
/**
* Return a copy of the divided difference array.
* <p>
* The divided difference array is defined recursively by <pre>
* f[x0] = f(x0)
* f[x0,x1,...,xk] = (f[x1,...,xk] - f[x0,...,x[k-1]]) / (xk - x0)
* </pre></p>
* <p>
* The computational complexity is O(N^2).</p>
*
* @param x Interpolating points array.
* @param y Interpolating values array.
* @return a fresh copy of the divided difference array.
* @throws org.apache.commons.math.exception.DimensionMismatchException
* if the array lengths are different.
* @throws org.apache.commons.math.exception.NumberIsTooSmallException
* if the number of points is less than 2.
* @throws org.apache.commons.math.exception.NonMonotonousSequenceException
* if {@code x} is not sorted in strictly increasing order.
*/
protected static double[] computeDividedDifference(final double x[], final double y[]) {
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y, true);
final double[] divdiff = y.clone(); // initialization
final int n = x.length;
final double[] a = new double [n];
a[0] = divdiff[0];
for (int i = 1; i < n; i++) {
for (int j = 0; j < n-i; j++) {
final double denominator = x[j+i] - x[j];
divdiff[j] = (divdiff[j+1] - divdiff[j]) / denominator;
}
a[i] = divdiff[0];
}
return a;
}
示例13: interpolate
import org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm; //導入依賴的package包/類
/**
* Computes an interpolating function for the data set.
*
* @param x the interpolating points array
* @param y the interpolating values array
* @return a function which interpolates the data set
* @throws MathException if arguments are invalid
*/
public PolynomialFunctionLagrangeForm interpolate(double x[], double y[])
throws MathException {
return new PolynomialFunctionLagrangeForm(x, y);
}
示例14: interpolate
import org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm; //導入依賴的package包/類
/**
* Computes an interpolating function for the data set.
*
* @param x the interpolating points array
* @param y the interpolating values array
* @return a function which interpolates the data set
* @throws org.apache.commons.math.exception.DimensionMismatchException if
* the array lengths are different.
* @throws org.apache.commons.math.exception.NumberIsTooSmallException if
* the number of points is less than 2.
* @throws org.apache.commons.math.exception.NonMonotonousSequenceException
* if two abscissae have the same value.
*/
public PolynomialFunctionLagrangeForm interpolate(double x[], double y[]) {
return new PolynomialFunctionLagrangeForm(x, y);
}