當前位置: 首頁>>代碼示例>>Java>>正文


Java POSModel類代碼示例

本文整理匯總了Java中opennlp.tools.postag.POSModel的典型用法代碼示例。如果您正苦於以下問題:Java POSModel類的具體用法?Java POSModel怎麽用?Java POSModel使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


POSModel類屬於opennlp.tools.postag包,在下文中一共展示了POSModel類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: main

import opennlp.tools.postag.POSModel; //導入依賴的package包/類
public static void main(String[] args) throws IOException {
    if (args.length == 0) {
        System.err.println("Usage: AnswerTypeEventStream eventfile");
        System.exit(1);
    }
    int ai = 0;
    String eventFile = args[ai++];
    String modelsDirProp = System.getProperty("models.dir", "book/src/main" + File.separator + "opennlp-models" +
            File.separator + "english");
    File modelsDir = new File(modelsDirProp);
    File wordnetDir = new File(System.getProperty("wordnet.dir", "book/src/main" + File.separator + "WordNet-3.0" + File.separator + "dict"));
    InputStream chunkerStream = new FileInputStream(
            new File(modelsDir, "en-chunker.bin"));
    ChunkerModel chunkerModel = new ChunkerModel(chunkerStream);
    ChunkerME chunker = new ChunkerME(chunkerModel);
    InputStream posStream = new FileInputStream(
            new File(modelsDir, "en-pos-maxent.bin"));
    POSModel posModel = new POSModel(posStream);
    POSTaggerME tagger = new POSTaggerME(posModel);
    Parser parser = new ChunkParser(chunker, tagger);
    AnswerTypeContextGenerator actg = new AnswerTypeContextGenerator(wordnetDir);
    EventStream es = new AnswerTypeEventStream(eventFile, actg, parser);
    while (es.hasNext()) {
        System.out.println(es.next().toString());
    }
}
 
開發者ID:asmehra95,項目名稱:wiseowl,代碼行數:27,代碼來源:AnswerTypeEventStream.java

示例2: testLemmatizing

import opennlp.tools.postag.POSModel; //導入依賴的package包/類
@Test
public void testLemmatizing() throws Exception {
    try (InputStream posInputStream = this.getClass().getResourceAsStream("/nlp/en-pos-maxent.bin");
         InputStream lemmaInputStream = getClass().getResourceAsStream("/nlp/en-lemmatizer.dict")) {

        POSModel model = new POSModel(posInputStream);
        POSTaggerME tagger = new POSTaggerME(model);

        String sent[] = new String[]{"Fine", "Most", "large", "cities", "in", "the", "US", "had",
                "morning", "and", "afternoon", "newspapers", "."};
        String tags[] = tagger.tag(sent);

        DictionaryLemmatizer dictionaryLemmatizer = new DictionaryLemmatizer(lemmaInputStream);

        String[] lemmatize = dictionaryLemmatizer.lemmatize(sent, tags);

        logger.info("lemmas: {}", Arrays.asList(lemmatize));

    }
}
 
開發者ID:bpark,項目名稱:chlorophytum-semantics,代碼行數:21,代碼來源:NlpTest.java

示例3: testPOSTaggerWithCustomFactory

import opennlp.tools.postag.POSModel; //導入依賴的package包/類
@Test
public void testPOSTaggerWithCustomFactory() throws Exception {

  Path dictionary = POSDictionayBuilderTest.createMorfologikDictionary();
  POSTaggerFactory inFactory = new MorfologikPOSTaggerFactory();
  TagDictionary inDict = inFactory.createTagDictionary(dictionary.toFile());
  inFactory.setTagDictionary(inDict);

  POSModel posModel = trainPOSModel(ModelType.MAXENT, inFactory);

  POSTaggerFactory factory = posModel.getFactory();
  assertTrue(factory.getTagDictionary() instanceof MorfologikTagDictionary);

  factory = null;
  
  ByteArrayOutputStream out = new ByteArrayOutputStream();
  posModel.serialize(out);
  ByteArrayInputStream in = new ByteArrayInputStream(out.toByteArray());

  POSModel fromSerialized = new POSModel(in);

  factory = fromSerialized.getFactory();
  assertTrue(factory.getTagDictionary() instanceof MorfologikTagDictionary);
  
  assertEquals(2, factory.getTagDictionary().getTags("casa").length);
}
 
開發者ID:apache,項目名稱:opennlp-addons,代碼行數:27,代碼來源:POSTaggerFactoryTest.java

示例4: doInitialize

import opennlp.tools.postag.POSModel; //導入依賴的package包/類
@Override
public void doInitialize(UimaContext aContext) throws ResourceInitializationException {
	try {
		tokensModel.loadModel(TokenizerModel.class, getClass().getResourceAsStream("en_token.bin"));
		sentencesModel.loadModel(SentenceModel.class, getClass().getResourceAsStream("en_sent.bin"));
		posModel.loadModel(POSModel.class, getClass().getResourceAsStream("en_pos_maxent.bin"));
		chunkModel.loadModel(ChunkerModel.class, getClass().getResourceAsStream("en_chunker.bin"));
	} catch (BaleenException be) {
		getMonitor().error("Unable to load OpenNLP Language Models", be);
		throw new ResourceInitializationException(be);
	}

	try {
		sentenceDetector = new SentenceDetectorME((SentenceModel) sentencesModel.getModel());
		wordTokenizer = new TokenizerME((TokenizerModel) tokensModel.getModel());
		posTagger = new POSTaggerME((POSModel) posModel.getModel());
		phraseChunker = new ChunkerME((ChunkerModel) chunkModel.getModel());
	} catch (Exception e) {
		getMonitor().error("Unable to create OpenNLP taggers", e);
		throw new ResourceInitializationException(e);
	}
}
 
開發者ID:dstl,項目名稱:baleen,代碼行數:23,代碼來源:OpenNLP.java

示例5: scoreStructure

import opennlp.tools.postag.POSModel; //導入依賴的package包/類
public double scoreStructure(String ca, String q, String passage, boolean verbose) throws InvalidFormatException, IOException{
	POSTaggerME parserModel = new POSTaggerME(new POSModel(new FileInputStream(new File("en-pos-model.bin"))));
	Tokenizer tokenizer = new TokenizerME(new TokenizerModel(new FileInputStream(new File("en-token.bin"))));
	Parser parser = ParserFactory.create(new ParserModel(new FileInputStream(new File("en-parser.bin"))));
	double score = 0;
	
	Parse[] questionParse = ParserTool.parseLine(q, parser, 1);
	Parse[] passageParse = ParserTool.parseLine(q, parser, 1);
	
	if (passage.contains(ca)) {
		for (int i =0; i < questionParse.length; i++) {
			score += matchChildren(questionParse[i],passageParse[i]);
		}
	}
	
	return score;
}
 
開發者ID:SeanTater,項目名稱:uncc2014watsonsim,代碼行數:18,代碼來源:JM_Scorer.java

示例6: startStage

import opennlp.tools.postag.POSModel; //導入依賴的package包/類
@Override
public void startStage(StageConfiguration config) {

  // parse the config to map the params properly
  textField = config.getProperty("textField", textField);
  peopleField = config.getProperty("peopleField", peopleField);
  posTextField = config.getProperty("posTextField", posTextField);

  try {
    // Sentence finder
    SentenceModel sentModel = new SentenceModel(new FileInputStream(sentenceModelFile));
    sentenceDetector = new SentenceDetectorME(sentModel);
    // tokenizer
    TokenizerModel tokenModel = new TokenizerModel(new FileInputStream(tokenModelFile));
    tokenizer = new TokenizerME(tokenModel);
    // person name finder
    TokenNameFinderModel nameModel = new TokenNameFinderModel(new FileInputStream(personModelFile));
    nameFinder = new NameFinderME(nameModel);
    // load the part of speech tagger.
    posTagger = new POSTaggerME(new POSModel(new FileInputStream(posModelFile)));
  } catch (IOException e) {
    log.info("Error loading up OpenNLP Models. {}", e.getLocalizedMessage());
    e.printStackTrace();
  }
}
 
開發者ID:MyRobotLab,項目名稱:myrobotlab,代碼行數:26,代碼來源:NounPhraseExtractor.java

示例7: KeyPhraseChunkExtractor

import opennlp.tools.postag.POSModel; //導入依賴的package包/類
public KeyPhraseChunkExtractor() throws Exception, IOException {

		InputStream modelIn = getClass().getResourceAsStream(
				"/nlptools/data/en-pos-maxent.bin");
		posModel = new POSModel(modelIn);
		tagger = new POSTaggerME(posModel);

		modelIn = getClass().getResourceAsStream(
				"/nlptools/data/en-chunker.bin");
		chunkModel = new ChunkerModel(modelIn);
		chunker = new ChunkerME(chunkModel);

		modelIn = getClass().getResourceAsStream("/nlptools/data/en-token.bin");
		nlTokenizerModel = new TokenizerModel(modelIn);
		nlTokenizer = new TokenizerME(nlTokenizerModel);
	}
 
開發者ID:mast-group,項目名稱:nlptools,代碼行數:17,代碼來源:KeyPhraseChunkExtractor.java

示例8: train

import opennlp.tools.postag.POSModel; //導入依賴的package包/類
public final POSModel train(final TrainingParameters params) {
  // features
  if (getPosTaggerFactory() == null) {
    throw new IllegalStateException(
        "Classes derived from AbstractTrainer must "
            + " create a POSTaggerFactory features!");
  }
  // training model
  POSModel trainedModel = null;
  POSEvaluator posEvaluator = null;
  try {
    trainedModel = POSTaggerME.train(this.lang, this.trainSamples, params,
        getPosTaggerFactory());
    final POSTaggerME posTagger = new POSTaggerME(trainedModel);
    posEvaluator = new POSEvaluator(posTagger);
    posEvaluator.evaluate(this.testSamples);
  } catch (final IOException e) {
    System.err.println("IO error while loading training and test sets!");
    e.printStackTrace();
    System.exit(1);
  }
  System.out.println("Final result: " + posEvaluator.getWordAccuracy());
  return trainedModel;
}
 
開發者ID:ixa-ehu,項目名稱:ixa-pipe-pos,代碼行數:25,代碼來源:AbstractTaggerTrainer.java

示例9: POSExample

import opennlp.tools.postag.POSModel; //導入依賴的package包/類
public void POSExample() {
    try (InputStream input = new FileInputStream(
            new File("en-pos-maxent.bin"));) {

        // To lower case example
        String lowerCaseVersion = sentence.toLowerCase();
        out.println(lowerCaseVersion);

        // Pull out tokens
        List<String> list = new ArrayList<>();
        Scanner scanner = new Scanner(sentence);
        while (scanner.hasNext()) {
            list.add(scanner.next());
        }
        // Convert list to an array
        String[] words = new String[1];
        words = list.toArray(words);

        // Build model
        POSModel posModel = new POSModel(input);
        POSTaggerME posTagger = new POSTaggerME(posModel);

        // Tag words
        String[] posTags = posTagger.tag(words);
        for (int i = 0; i < posTags.length; i++) {
            out.println(words[i] + " - " + posTags[i]);
        }

        // Find top sequences
        Sequence sequences[] = posTagger.topKSequences(words);
        for (Sequence sequence : sequences) {
            out.println(sequence);
        }
    } catch (IOException ex) {
        ex.printStackTrace();
    }
}
 
開發者ID:PacktPublishing,項目名稱:Machine-Learning-End-to-Endguide-for-Java-developers,代碼行數:38,代碼來源:NLPExamples.java

示例10: readPOSModel

import opennlp.tools.postag.POSModel; //導入依賴的package包/類
private POSModel readPOSModel(Language language) {
    logger.debug(marker, "Reading POS model for {}", language);
    File modelFile = new File(modelsDir, String.format("%s-pos-maxent.bin", language.name().toLowerCase()));
    try (InputStream in = new FileInputStream(modelFile)) {
        return new POSModel(in);
    } catch (IOException e) {
        throw new StarGraphException("Can't read '" + modelFile + "'", e);
    }
}
 
開發者ID:Lambda-3,項目名稱:Stargraph,代碼行數:10,代碼來源:OpenNLPAnnotator.java

示例11: init

import opennlp.tools.postag.POSModel; //導入依賴的package包/類
@SuppressWarnings("rawtypes")
public void init(NamedList initArgs) {
	
    SolrParams params = SolrParams.toSolrParams(initArgs);
    String modelDirectory = params.get("modelDirectory",
            System.getProperty("model.dir"));//<co id="qqpp.model"/>
    String wordnetDirectory = params.get("wordnetDirectory",
            System.getProperty("wordnet.dir"));//<co id="qqpp.wordnet"/>
    if (modelDirectory != null) {
      File modelsDir = new File(modelDirectory);
      try {
        InputStream chunkerStream = new FileInputStream(
            new File(modelsDir,"en-chunker.bin"));
        ChunkerModel chunkerModel = new ChunkerModel(chunkerStream);
        chunker = new ChunkerME(chunkerModel); //<co id="qqpp.chunker"/>
        InputStream posStream = new FileInputStream(
            new File(modelsDir,"en-pos-maxent.bin"));
        POSModel posModel = new POSModel(posStream);
        tagger =  new POSTaggerME(posModel); //<co id="qqpp.tagger"/>
       // model = new DoccatModel(new FileInputStream( //<co id="qqpp.theModel"/>
     //       new File(modelDirectory,"en-answer.bin"))).getMaxentModel();
        model = new SuffixSensitiveGISModelReader(new File(modelDirectory+"/qa/ans.bin")).getModel();
        //GISModel m = new SuffixSensitiveGISModelReader(new File(modelFileName)).getModel(); 
        probs = new double[model.getNumOutcomes()];
        atcg = new AnswerTypeContextGenerator(
                new File(wordnetDirectory, "dict"));//<co id="qqpp.context"/>
      } catch (IOException e) {
        throw new RuntimeException(e);
      }
    }
  }
 
開發者ID:asmehra95,項目名稱:wiseowl,代碼行數:32,代碼來源:WiseOwlQParserPlugin.java

示例12: main

import opennlp.tools.postag.POSModel; //導入依賴的package包/類
/**
 * Train the answer model
 * <p>
 * Hint:
 * <pre>
 *  mvn exec:java -Dexec.mainClass=com.tamingtext.qa.AnswerTypeClassifier \
 *    -Dexec.args="dist/data/questions-train.txt en-answer.bin" \
 *    -Dmodel.dir=../../opennlp-models \
 *    -Dwordnet.dir=../../Wordnet-3.0/dict
 *  </pre>
 *
 * @param args
 * @throws IOException
 */
public static void main(String[] args) throws IOException {
    if (args.length < 2) {
        System.err.println("Usage: AnswerTypeClassifier <trainFile> <modelFile>");
        System.exit(1);
    }

    String trainFile = args[0];
    File outFile = new File(args[1]);
    String modelsDirProp = System.getProperty("model.dir");
    File modelsDir = new File(modelsDirProp);
    String wordnetDir = System.getProperty("wordnet.dir");

    InputStream chunkerStream = new FileInputStream(
            new File(modelsDir, "en-chunker.bin"));
    ChunkerModel chunkerModel = new ChunkerModel(chunkerStream);
    ChunkerME chunker = new ChunkerME(chunkerModel);
    InputStream posStream = new FileInputStream(
            new File(modelsDir, "en-pos-maxent.bin"));
    POSModel posModel = new POSModel(posStream);
    POSTaggerME tagger = new POSTaggerME(posModel);
    Parser parser = new ChunkParser(chunker, tagger);
    AnswerTypeContextGenerator actg = new AnswerTypeContextGenerator(new File(wordnetDir));
    //<start id="atc.train"/>
    AnswerTypeEventStream es = new AnswerTypeEventStream(trainFile,
            actg, parser);
    GISModel model = GIS.trainModel(100, new TwoPassDataIndexer(es, 3));//<co id="atc.train.do"/>
    GISModelWriter writer = new SuffixSensitiveGISModelWriter(model, outFile);
    writer.persist();
    //new DoccatModel("en", model).serialize(new FileOutputStream(outFile));
/*
<calloutlist>
    <callout arearefs="atc.train.do"><para>Using the event stream, which feeds us training examples, do the actual training using OpenNLP's Maxent classifier.</para></callout>
</calloutlist>
*/
    //<end id="atc.train"/>
}
 
開發者ID:asmehra95,項目名稱:wiseowl,代碼行數:51,代碼來源:AnswerTypeClassifier.java

示例13: main

import opennlp.tools.postag.POSModel; //導入依賴的package包/類
public static void main(String args[]) throws IOException
{
	String wordnetDir = System.getProperty("wordnet.dir");
	//wordnetDir="WordNet-3.0/dict/";
	String question="Who is Abraham Lincoln?";
	AnswerTypeContextGenerator atcg=new AnswerTypeContextGenerator(new File(wordnetDir));
	String q=null;
    String modelsDirProp = System.getProperty("model.dir");
   // modelsDirProp="opennlp-models/";
    File modelsDir = new File(modelsDirProp);
    InputStream chunkerStream = new FileInputStream(
        new File(modelsDir,"en-chunker.bin"));
    ChunkerModel chunkerModel = new ChunkerModel(chunkerStream);
    ChunkerME chunker = new ChunkerME(chunkerModel);
    InputStream posStream = new FileInputStream(
        new File(modelsDir,"en-pos-maxent.bin"));
    POSModel posModel = new POSModel(posStream);
    POSTaggerME tagger =  new POSTaggerME(posModel);
    Parser parser = new ChunkParser(chunker, tagger);
    
    Parse query = ParserTool.parseLine(question,parser,1)[0];
	String[] context=atcg.getContext(query);
	for(int i=0;i<context.length;i++)
	{
		if(context[i].startsWith("hw=") || context[i].startsWith("mw="))
		{
			System.out.println(context[i].substring(3));
		}
	}
}
 
開發者ID:asmehra95,項目名稱:wiseowl,代碼行數:31,代碼來源:FocusNoun.java

示例14: getFocusNoun

import opennlp.tools.postag.POSModel; //導入依賴的package包/類
public String[] getFocusNoun(String question) throws IOException
{
	String wordnetDir = System.getProperty("wordnet.dir");
	wordnetDir="WordNet-3.0/dict/";
	AnswerTypeContextGenerator atcg=new AnswerTypeContextGenerator(new File(wordnetDir));
	String q=null;
    String modelsDirProp = System.getProperty("model.dir");
    modelsDirProp="opennlp-models/";
    File modelsDir = new File(modelsDirProp);
    InputStream chunkerStream = new FileInputStream(
        new File(modelsDir,"en-chunker.bin"));
    ChunkerModel chunkerModel = new ChunkerModel(chunkerStream);
    ChunkerME chunker = new ChunkerME(chunkerModel);
    InputStream posStream = new FileInputStream(
        new File(modelsDir,"en-pos-maxent.bin"));
    POSModel posModel = new POSModel(posStream);
    POSTaggerME tagger =  new POSTaggerME(posModel);
    Parser parser = new ChunkParser(chunker, tagger);
    
    Parse query = ParserTool.parseLine(question,parser,1)[0];
	String[] context=atcg.getContext(query);
	String[] focus=new String[2];
	int p=0;
	for(int i=0;i<context.length;i++)
	{
		if(context[i].startsWith("hw=") || context[i].startsWith("mw="))
		{
			//System.out.println(context[i].substring(3));
			focus[p++]=context[i].substring(3);
		}
	}
	return focus;
}
 
開發者ID:asmehra95,項目名稱:wiseowl,代碼行數:34,代碼來源:FocusNoun.java

示例15: initPosTagger

import opennlp.tools.postag.POSModel; //導入依賴的package包/類
private void initPosTagger() {
    try (InputStream modelIn = NlpVerticle.class.getResourceAsStream("/nlp/en-pos-maxent.bin")) {
        POSModel model = new POSModel(modelIn);
        posTagger = new POSTaggerME(model);
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}
 
開發者ID:bpark,項目名稱:chlorophytum-semantics,代碼行數:9,代碼來源:NlpVerticle.java


注:本文中的opennlp.tools.postag.POSModel類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。