本文整理匯總了Java中opennlp.tools.ml.model.DataIndexer類的典型用法代碼示例。如果您正苦於以下問題:Java DataIndexer類的具體用法?Java DataIndexer怎麽用?Java DataIndexer使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
DataIndexer類屬於opennlp.tools.ml.model包,在下文中一共展示了DataIndexer類的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: getDataIndexer
import opennlp.tools.ml.model.DataIndexer; //導入依賴的package包/類
@Override
public DataIndexer getDataIndexer(ObjectStream<Event> events) throws IOException {
String dataIndexerName = getStringParam(DATA_INDEXER_PARAM,
DATA_INDEXER_TWO_PASS_VALUE);
int cutoff = getCutoff();
boolean sortAndMerge = isSortAndMerge();
DataIndexer indexer = null;
if (DATA_INDEXER_ONE_PASS_VALUE.equals(dataIndexerName)) {
indexer = new OnePassDataIndexer(events, cutoff, sortAndMerge);
} else if (DATA_INDEXER_TWO_PASS_VALUE.equals(dataIndexerName)) {
indexer = new TwoPassDataIndexer(events, cutoff, sortAndMerge);
} else if (DATA_INDEXER_CHI_SQUARED.equals(dataIndexerName)) {
indexer = new ChiSquaredDataIndexer(events, cutoff, sortAndMerge);
}
else {
throw new IllegalStateException("Unexpected data indexer name: "
+ dataIndexerName);
}
return indexer;
}
示例2: doTrain
import opennlp.tools.ml.model.DataIndexer; //導入依賴的package包/類
@Override
public MaxentModel doTrain(DataIndexer indexer) throws IOException {
List<Double> vy = new ArrayList<Double>();
List<Feature[]> vx = new ArrayList<Feature[]>();
// outcomes
int outcomes[] = indexer.getOutcomeList();
int max_index = 0;
// For each event ...
for (int i = 0; i < indexer.getContexts().length; i++) {
int outcome = outcomes[i];
vy.add(Double.valueOf(outcome));
int features[] = indexer.getContexts()[i];
Feature[] x;
if (bias >= 0) {
x = new Feature[features.length + 1];
} else {
x = new Feature[features.length];
}
// for each feature ...
for (int fi = 0; fi < features.length; fi++) {
// TODO: SHOUDL BE indexer.getNumTimesEventsSeen()[i] and not fi !!!
x[fi] = new FeatureNode(features[fi] + 1, indexer.getNumTimesEventsSeen()[i]);
}
if (features.length > 0) {
max_index = Math.max(max_index, x[features.length - 1].getIndex());
}
vx.add(x);
}
Problem problem = constructProblem(vy, vx, max_index, bias);
Parameter parameter = new Parameter(solverType, c, eps, p);
Model liblinearModel = Linear.train(problem, parameter);
Map<String, Integer> predMap = new HashMap<String, Integer>();
String predLabels[] = indexer.getPredLabels();
for (int i = 0; i < predLabels.length; i++) {
predMap.put(predLabels[i], i);
}
return new LiblinearModel(liblinearModel, indexer.getOutcomeLabels(), predMap);
}
示例3: doTrain
import opennlp.tools.ml.model.DataIndexer; //導入依賴的package包/類
public MaxentModel doTrain(DataIndexer indexer) throws IOException {
int iterations = getIterations();
MaxentModel model;
int threads = getIntParam("Threads", 1);
model = trainModel(iterations, indexer, true, false, null, 0, threads);
return model;
}
示例4: trainModel
import opennlp.tools.ml.model.DataIndexer; //導入依賴的package包/類
/**
* Train a model using the GIS algorithm.
*
* @param iterations
* The number of GIS iterations to perform.
* @param indexer
* The object which will be used for event compilation.
* @param printMessagesWhileTraining
* Determines whether training status messages are written to STDOUT.
* @param smoothing
* Defines whether the created trainer will use smoothing while
* training the model.
* @param modelPrior
* The prior distribution for the model.
* @param cutoff
* The number of times a predicate must occur to be used in a model.
* @return The newly trained model, which can be used immediately or saved to
* disk using an opennlp.tools.ml.maxent.io.GISModelWriter object.
*/
public static GISModel trainModel(int iterations, DataIndexer indexer,
boolean printMessagesWhileTraining, boolean smoothing, Prior modelPrior,
int cutoff, int threads) {
GISTrainer trainer = new GISTrainer(printMessagesWhileTraining);
trainer.setSmoothing(smoothing);
trainer.setSmoothingObservation(SMOOTHING_OBSERVATION);
if (modelPrior == null) {
modelPrior = new UniformPrior();
}
return trainer.trainModel(iterations, indexer, modelPrior, cutoff, threads);
}