本文整理匯總了Java中net.finmath.exception.CalculationException類的典型用法代碼示例。如果您正苦於以下問題:Java CalculationException類的具體用法?Java CalculationException怎麽用?Java CalculationException使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
CalculationException類屬於net.finmath.exception包,在下文中一共展示了CalculationException類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: getValue
import net.finmath.exception.CalculationException; //導入依賴的package包/類
/**
* This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
* Note: For a lattice this is often the value conditional to evalutationTime, for a Monte-Carlo simulation this is the (sum of) value discounted to evaluation time.
* Cashflows prior evaluationTime are not considered.
*
* @param evaluationTime The time on which this products value should be observed.
* @param model The model used to price the product.
* @return The random variable representing the value of the product discounted to evaluation time
* @throws net.finmath.exception.CalculationException Thrown if the valuation fails, specific cause may be available via the <code>cause()</code> method.
*/
@Override
public RandomVariableInterface getValue(double evaluationTime, AssetModelMonteCarloSimulationInterface model) throws CalculationException {
// Calculate average
RandomVariableInterface average = model.getRandomVariableForConstant(0.0);
for(double time : timesForAveraging) {
RandomVariableInterface underlying = model.getAssetValue(time, underlyingIndex);
average = average.add(underlying);
}
average = average.div(timesForAveraging.getNumberOfTimes());
// The payoff: values = max(underlying - strike, 0)
RandomVariableInterface values = average.sub(strike).floor(0.0);
// Discounting...
RandomVariableInterface numeraireAtMaturity = model.getNumeraire(maturity);
RandomVariableInterface monteCarloWeights = model.getMonteCarloWeights(maturity);
values = values.div(numeraireAtMaturity).mult(monteCarloWeights);
// ...to evaluation time.
RandomVariableInterface numeraireAtEvalTime = model.getNumeraire(evaluationTime);
RandomVariableInterface monteCarloProbabilitiesAtEvalTime = model.getMonteCarloWeights(evaluationTime);
values = values.mult(numeraireAtEvalTime).div(monteCarloProbabilitiesAtEvalTime);
return values;
}
示例2: testModelRandomVariable
import net.finmath.exception.CalculationException; //導入依賴的package包/類
/**
* @throws CalculationException Thrown if s.th. went wrong during calculation (check getCause for details).
*/
@Test
public void testModelRandomVariable() throws CalculationException {
/*
* Create the valuation model (see <code>getModel</code>)
*/
AssetModelMonteCarloSimulationInterface model = getModel();
RandomVariableInterface stockAtTimeOne = model.getAssetValue(1.0, 0);
System.out.println("The first 100 realizations of the " + stockAtTimeOne.size() + " realizations of S(1) are:");
System.out.println("Path\tValue");
for(int i=0; i<100;i++) {
System.out.println(i + "\t" + stockAtTimeOne.get(i));
}
double spot = stockAtTimeOne.div(model.getNumeraire(1.0)).mult(model.getNumeraire(model.getTime(0))).getAverage();
System.out.println("Expectation of S(1)/N(1)*N(0) = " + spot + " (expected " + initialValue + ")");
Assert.assertEquals(initialValue, spot, 2E-3);
}
示例3: testProductImplementation
import net.finmath.exception.CalculationException; //導入依賴的package包/類
@Test
public void testProductImplementation() throws CalculationException {
// Create a model
AbstractModel model = new BlackScholesModel(initialValue, riskFreeRate, volatility);
// Create a time discretization
TimeDiscretizationInterface timeDiscretization = new TimeDiscretization(0.0 /* initial */, numberOfTimeSteps, deltaT);
// Create a corresponding MC process
AbstractProcess process = new ProcessEulerScheme(new BrownianMotion(timeDiscretization, 1 /* numberOfFactors */, numberOfPaths, seed));
// Using the process (Euler scheme), create an MC simulation of a Black-Scholes model
AssetModelMonteCarloSimulationInterface monteCarloBlackScholesModel = new MonteCarloAssetModel(model, process);
/*
* Value a call option (using the product implementation)
*/
EuropeanOption europeanOption = new EuropeanOption(optionMaturity, optionStrike);
double value = europeanOption.getValue(monteCarloBlackScholesModel);
double valueAnalytic = AnalyticFormulas.blackScholesOptionValue(initialValue, riskFreeRate, volatility, optionMaturity, optionStrike);
System.out.println("value using Monte-Carlo.......: " + value);
System.out.println("value using analytic formula..: " + valueAnalytic);
Assert.assertEquals(valueAnalytic, value, 0.005);
}
示例4: testModelProperties
import net.finmath.exception.CalculationException; //導入依賴的package包/類
/**
* Test some properties of the model
*
* @throws CalculationException Thrown if s.th. went wrong during calculation (check getCause for details).
*/
@Test
public void testModelProperties() throws CalculationException {
/*
* Create the valuation model (see <code>getModel</code>)
*/
AssetModelMonteCarloSimulationInterface model = getModel();
TimeDiscretizationInterface modelTimeDiscretization = model.getTimeDiscretization();
System.out.println("Time \tAverage \t\tVariance");
for(double time : modelTimeDiscretization) {
RandomVariableInterface assetValue = model.getAssetValue(time, 0);
double average = assetValue.getAverage();
double variance = assetValue.getVariance();
double error = assetValue.getStandardError();
DecimalFormat formater2Digits = new DecimalFormat("0.00");
DecimalFormat formater4Digits = new DecimalFormat("0.0000");
System.out.println(formater2Digits.format(time) + " \t" + formater4Digits.format(average) + "\t+/- " + formater4Digits.format(error) + "\t" + formater4Digits.format(variance));
}
}
示例5: testMultiPeriodFloater
import net.finmath.exception.CalculationException; //導入依賴的package包/類
@Test
public void testMultiPeriodFloater() throws CalculationException {
double tolerance = 2E-3;
ArrayList<AbstractProductComponent> periods = new ArrayList<AbstractProductComponent>();
for(int iPeriod = 0; iPeriod<10; iPeriod++) {
double periodStart = 2.0 + 0.5 * iPeriod;
double periodEnd = 2.0 + 0.5 * (iPeriod+1);
double periodLength = periodEnd-periodStart;
AbstractIndex index = new LIBORIndex(0.0, periodLength);
Period period = new Period(periodStart, periodEnd, periodStart, periodEnd, new Notional(1.0), index, periodLength, true, true, false);
periods.add(period);
}
AbstractProductComponent floater = new ProductCollection(periods);
double value = floater.getValue(liborMarketModel);
double toleranceThisTest = tolerance/Math.sqrt(((double)liborMarketModel.getNumberOfPaths())/100000.0);
NumberFormat formatDec6 = new DecimalFormat("0.000000");
System.out.println(
formatDec6.format(value) + "\t" +
formatDec6.format(toleranceThisTest));
Assert.assertEquals("Deviation", 0.0, value, toleranceThisTest);
}
示例6: getValue
import net.finmath.exception.CalculationException; //導入依賴的package包/類
/**
* This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
* Note: For a lattice this is often the value conditional to evalutationTime, for a Monte-Carlo simulation this is the (sum of) value discounted to evaluation time.
* Cashflows prior evaluationTime are not considered.
*
* @param evaluationTime The time on which this products value should be observed.
* @param model The model used to price the product.
* @return The random variable representing the value of the product discounted to evaluation time
* @throws net.finmath.exception.CalculationException Thrown if the valuation fails, specific cause may be available via the <code>cause()</code> method.
*/
@Override
public RandomVariableInterface getValue(double evaluationTime, LIBORModelMonteCarloSimulationInterface model) throws CalculationException {
// Get random variables
RandomVariableInterface numeraire = model.getNumeraire(maturity);
RandomVariableInterface monteCarloProbabilities = model.getMonteCarloWeights(maturity);
// Calculate numeraire relative value
RandomVariableInterface values = model.getRandomVariableForConstant(1.0);
values = values.div(numeraire).mult(monteCarloProbabilities);
// Convert back to values
RandomVariableInterface numeraireAtEvaluationTime = model.getNumeraire(evaluationTime);
RandomVariableInterface monteCarloProbabilitiesAtEvaluationTime = model.getMonteCarloWeights(evaluationTime);
values = values.mult(numeraireAtEvaluationTime).div(monteCarloProbabilitiesAtEvaluationTime);
// Return values
return values;
}
示例7: testModelRandomVariable
import net.finmath.exception.CalculationException; //導入依賴的package包/類
/**
* @throws CalculationException Thrown if s.th. went wrong during calculation (check getCause for details).
*/
@Test
public void testModelRandomVariable() throws CalculationException {
/*
* Create the valuation model (see <code>getModel</code>)
*/
AssetModelMonteCarloSimulationInterface model = getModel();
RandomVariableInterface stockAtTimeOne = model.getAssetValue(1.0, 0);
System.out.println("The first 100 realizations of the " + stockAtTimeOne.size() + " realizations of S(1) are:");
System.out.println("Path\tValue");
for(int i=0; i<100;i++) {
System.out.println(i + "\t" + stockAtTimeOne.get(i));
}
}
示例8: getValue
import net.finmath.exception.CalculationException; //導入依賴的package包/類
/**
* This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
* Note: For a lattice this is often the value conditional to evalutationTime, for a Monte-Carlo simulation this is the (sum of) value discounted to evaluation time.
* cash-flows prior evaluationTime are not considered.
*
* @param evaluationTime The time on which this products value should be observed.
* @param model The model used to price the product.
* @return The random variable representing the value of the product discounted to evaluation time
* @throws net.finmath.exception.CalculationException Thrown if the valuation fails, specific cause may be available via the <code>cause()</code> method.
*/
@Override
public RandomVariableInterface getValue(double evaluationTime, LIBORModelMonteCarloSimulationInterface model) throws CalculationException {
// Note: We use > here. To distinguish an end of day valuation use hour of day for cash flows and evaluation date.
if(evaluationTime > flowDate) return model.getRandomVariableForConstant(0.0);
RandomVariableInterface values = model.getRandomVariableForConstant(flowAmount);
if(isPayer) values = values.mult(-1.0);
// Rebase to evaluationTime
if(flowDate != evaluationTime) {
// Get random variables
RandomVariableInterface numeraire = model.getNumeraire(flowDate);
RandomVariableInterface numeraireAtEval = model.getNumeraire(evaluationTime);
// RandomVariableInterface monteCarloProbabilities = model.getMonteCarloWeights(getPaymentDate());
values = values.div(numeraire).mult(numeraireAtEval);
}
// Return values
return values;
}
示例9: getValue
import net.finmath.exception.CalculationException; //導入依賴的package包/類
@Override
public RandomVariableInterface getValue(double evaluationTime, LIBORModelMonteCarloSimulationInterface model) throws CalculationException {
if(inceptionTime > evaluationTime) return new RandomVariable(0.0);
if(accrualPeriod <= 0) return new RandomVariable(Double.MAX_VALUE);
// Initialize the value of the account to 1.0
RandomVariableInterface value = new RandomVariable(initialValue);
// Loop over accrual periods
for(double time=inceptionTime; time<evaluationTime; time += accrualPeriod) {
// Get the forward fixed at the beginning of the period
RandomVariableInterface forwardRate = model.getLIBOR(time, time, time+accrualPeriod);
double currentAccrualPeriod = Math.min(accrualPeriod , evaluationTime-time);
// Accrue the value using the current forward rate
value = value.accrue(forwardRate, currentAccrualPeriod);
}
return value;
}
示例10: createCalibrationItem
import net.finmath.exception.CalculationException; //導入依賴的package包/類
private CalibrationItem createCalibrationItem(double exerciseDate, double swapPeriodLength, int numberOfPeriods, double moneyness, double targetVolatility, ForwardCurveInterface forwardCurve, DiscountCurveInterface discountCurve) throws CalculationException {
double[] fixingDates = new double[numberOfPeriods];
double[] paymentDates = new double[numberOfPeriods];
double[] swapTenor = new double[numberOfPeriods + 1];
for (int periodStartIndex = 0; periodStartIndex < numberOfPeriods; periodStartIndex++) {
fixingDates[periodStartIndex] = exerciseDate + periodStartIndex * swapPeriodLength;
paymentDates[periodStartIndex] = exerciseDate + (periodStartIndex + 1) * swapPeriodLength;
swapTenor[periodStartIndex] = exerciseDate + periodStartIndex * swapPeriodLength;
}
swapTenor[numberOfPeriods] = exerciseDate + numberOfPeriods * swapPeriodLength;
// Swaptions swap rate
double swaprate = moneyness + getParSwaprate(forwardCurve, discountCurve, swapTenor);
// Set swap rates for each period
double[] swaprates = new double[numberOfPeriods];
Arrays.fill(swaprates, swaprate);
/*
* We use Monte-Carlo calibration on implied volatility.
* Alternatively you may change here to Monte-Carlo valuation on price or
* use an analytic approximation formula, etc.
*/
SwaptionSimple swaptionMonteCarlo = new SwaptionSimple(swaprate, swapTenor, SwaptionSimple.ValueUnit.VOLATILITY);
// double targetValuePrice = AnalyticFormulas.blackModelSwaptionValue(swaprate, targetVolatility, fixingDates[0], swaprate, getSwapAnnuity(discountCurve, swapTenor));
return new CalibrationItem(swaptionMonteCarlo, targetVolatility, 1.0);
}
示例11: testProductImplementation
import net.finmath.exception.CalculationException; //導入依賴的package包/類
@Test
public void testProductImplementation() throws CalculationException {
long millisStart = System.currentTimeMillis();
// Create a model
AbstractModel model = new BlackScholesModel(initialValue, riskFreeRate, volatility);
// Create a corresponding MC process
AbstractProcess process = new ProcessEulerScheme(brownian);
// Link model and process for delegation
process.setModel(model);
model.setProcess(process);
/*
* Value a call option - directly
*/
TimeDiscretizationInterface timeDiscretization = brownian.getTimeDiscretization();
RandomVariableInterface asset = process.getProcessValue(timeDiscretization.getTimeIndex(optionMaturity), assetIndex);
RandomVariableInterface numeraireAtPayment = model.getNumeraire(optionMaturity);
RandomVariableInterface numeraireAtEval = model.getNumeraire(0.0);
RandomVariableInterface payoff = asset.sub(optionStrike).floor(0.0);
double value = payoff.div(numeraireAtPayment).mult(numeraireAtEval).getAverage();
double valueAnalytic = AnalyticFormulas.blackScholesOptionValue(initialValue, riskFreeRate, volatility, optionMaturity, optionStrike);
System.out.print(" value Monte-Carlo = " + formatterReal4.format(value));
System.out.print("\t value analytic = " + formatterReal4.format(valueAnalytic));
long millisEnd = System.currentTimeMillis();
System.out.println("\t calculation time = " + formatterReal2.format((millisEnd - millisStart)/1000.0) + " sec.");
System.out.println("");
Assert.assertEquals(valueAnalytic, value, 0.005);
}
示例12: testSingleCurveModel
import net.finmath.exception.CalculationException; //導入依賴的package包/類
@Test
public void testSingleCurveModel() throws CalculationException {
System.out.println("Runnning tests with a single curve LIBOR Market Model");
LIBORModelMonteCarloSimulationInterface liborMarketModel = createSingleCurveLIBORMarketModel(numberOfPaths, numberOfFactors, correlationDecayParam);
testModel(liborMarketModel, false);
}
示例13: createCalibrationItem
import net.finmath.exception.CalculationException; //導入依賴的package包/類
private CalibrationItem createCalibrationItem(double weight, double exerciseDate, double swapPeriodLength, int numberOfPeriods, double moneyness, double targetVolatility, String targetVolatilityType, ForwardCurveInterface forwardCurve, DiscountCurveInterface discountCurve) throws CalculationException {
double[] fixingDates = new double[numberOfPeriods];
double[] paymentDates = new double[numberOfPeriods];
double[] swapTenor = new double[numberOfPeriods + 1];
for (int periodStartIndex = 0; periodStartIndex < numberOfPeriods; periodStartIndex++) {
fixingDates[periodStartIndex] = exerciseDate + periodStartIndex * swapPeriodLength;
paymentDates[periodStartIndex] = exerciseDate + (periodStartIndex + 1) * swapPeriodLength;
swapTenor[periodStartIndex] = exerciseDate + periodStartIndex * swapPeriodLength;
}
swapTenor[numberOfPeriods] = exerciseDate + numberOfPeriods * swapPeriodLength;
// Swaptions swap rate
double swaprate = moneyness + getParSwaprate(forwardCurve, discountCurve, swapTenor);
// Set swap rates for each period
double[] swaprates = new double[numberOfPeriods];
Arrays.fill(swaprates, swaprate);
/*
* We use Monte-Carlo calibration on implied volatility.
* Alternatively you may change here to Monte-Carlo valuation on price or
* use an analytic approximation formula, etc.
*/
SwaptionSimple swaptionMonteCarlo = new SwaptionSimple(swaprate, swapTenor, SwaptionSimple.ValueUnit.valueOf(targetVolatilityType));
// double targetValuePrice = AnalyticFormulas.blackModelSwaptionValue(swaprate, targetVolatility, fixingDates[0], swaprate, getSwapAnnuity(discountCurve, swapTenor));
return new CalibrationItem(swaptionMonteCarlo, targetVolatility, weight);
}
示例14: getParSwaprate
import net.finmath.exception.CalculationException; //導入依賴的package包/類
private static double getParSwaprate(LIBORModelMonteCarloSimulationInterface liborMarketModel, double[] swapTenor, String tenorCode) throws CalculationException {
DiscountCurveInterface modelCurve = new DiscountCurveFromForwardCurve(liborMarketModel.getModel().getForwardRateCurve());
ForwardCurveInterface forwardCurve = new ForwardCurveFromDiscountCurve(modelCurve.getName(), liborMarketModel.getModel().getForwardRateCurve().getReferenceDate(), tenorCode);
return net.finmath.marketdata.products.Swap.getForwardSwapRate(new TimeDiscretization(swapTenor), new TimeDiscretization(swapTenor),
forwardCurve,
modelCurve);
}
示例15: testMultiCurveModel
import net.finmath.exception.CalculationException; //導入依賴的package包/類
@Test
public void testMultiCurveModel() throws CalculationException {
System.out.println("Runnning tests with a multi curve LIBOR Market Model");
LIBORModelMonteCarloSimulationInterface liborMarketModel = createMultiCurveLIBORMarketModel(numberOfPaths, numberOfFactors, correlationDecayParam);
testModel(liborMarketModel, true);
}