當前位置: 首頁>>代碼示例>>Java>>正文


Java RegressorEvaluator類代碼示例

本文整理匯總了Java中it.uniroma2.sag.kelp.utils.evaluation.RegressorEvaluator的典型用法代碼示例。如果您正苦於以下問題:Java RegressorEvaluator類的具體用法?Java RegressorEvaluator怎麽用?Java RegressorEvaluator使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


RegressorEvaluator類屬於it.uniroma2.sag.kelp.utils.evaluation包,在下文中一共展示了RegressorEvaluator類的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: testMSEWithEvaluator

import it.uniroma2.sag.kelp.utils.evaluation.RegressorEvaluator; //導入依賴的package包/類
@Test
public void testMSEWithEvaluator() throws NoSuchPerformanceMeasureException {
	RegressorEvaluator evaluator = new RegressorEvaluator(trainingSet.getRegressionProperties());
	for (int i = 0; i < testSet.getExamples().size(); ++i) {
		Example e = testSet.getExample(i);
		Prediction score = p.predict(e);
		evaluator.addCount(e, score);
	}
	float mse = evaluator.getMeanSquaredError(regressionLabel);
	Assert.assertEquals(0.0212349f, mse, 0.0001);
}
 
開發者ID:SAG-KeLP-Legacy,項目名稱:kelp-full,代碼行數:12,代碼來源:EpsilonSVRTest.java

示例2: testMSEWithEvaluatorAndReflection

import it.uniroma2.sag.kelp.utils.evaluation.RegressorEvaluator; //導入依賴的package包/類
@Test
public void testMSEWithEvaluatorAndReflection() throws NoSuchPerformanceMeasureException {
	RegressorEvaluator evaluator = new RegressorEvaluator(trainingSet.getRegressionProperties());
	for (int i = 0; i < testSet.getExamples().size(); ++i) {
		Example e = testSet.getExample(i);
		Prediction score = p.predict(e);
		evaluator.addCount(e, score);
	}
	
	float mse1 = evaluator.getPerformanceMeasure("MeanSquaredErrors");
	Assert.assertEquals(0.0212349f, mse1, 0.0001);
}
 
開發者ID:SAG-KeLP-Legacy,項目名稱:kelp-full,代碼行數:13,代碼來源:EpsilonSVRTest.java

示例3: main

import it.uniroma2.sag.kelp.utils.evaluation.RegressorEvaluator; //導入依賴的package包/類
public static void main(String[] args) throws Exception {
	// The epsilon in loss function of the regressor
	float pReg = 0.1f;
	// The regularization parameter of the regressor
	float c = 2f;
	// The gamma parameter in the RBF kernel
	float gamma = 1f;

	// The label indicating the value considered by the regressor
	Label label = new StringLabel("r");

	// Load the dataset
	SimpleDataset dataset = new SimpleDataset();
	dataset.populate("src/main/resources/sv_regression_test/mg_scale.klp");
	// Split the dataset in train and test datasets
	dataset.shuffleExamples(new Random(0));
	SimpleDataset[] split = dataset.split(0.7f);
	SimpleDataset trainDataset = split[0];
	SimpleDataset testDataset = split[1];

	// Kernel for the first representation (0-index)
	Kernel linear = new LinearKernel("0");
	// Applying the RBF kernel
	Kernel rbf = new RbfKernel(gamma, linear);
	// Applying a cache
	FixIndexKernelCache kernelCache = new FixIndexKernelCache(
			trainDataset.getNumberOfExamples());
	rbf.setKernelCache(kernelCache);

	// instantiate the regressor
	EpsilonSvmRegression regression = new EpsilonSvmRegression(rbf, label,
			c, pReg);

	// learn
	regression.learn(trainDataset);
	// get the prediction function
	RegressionFunction regressor = regression.getPredictionFunction();

	// initializing the performance evaluator
	RegressorEvaluator evaluator = new RegressorEvaluator(
			trainDataset.getRegressionProperties());

	// For each example from the test set
	for (Example e : testDataset.getExamples()) {
		// Predict the value
		Prediction prediction = regressor.predict(e);
		// Print the original and the predicted values
		System.out.println("real value: " + e.getRegressionValue(label)
				+ "\t-\tpredicted value: " + prediction.getScore(label));
		// Update the evaluator
		evaluator.addCount(e, prediction);
	}

	// Get the Mean Squared Error for the targeted label
	float measSquareError = evaluator.getMeanSquaredError(label);

	System.out.println("\nMean Squared Error:\t" + measSquareError);
}
 
開發者ID:SAG-KeLP-Legacy,項目名稱:kelp-examples,代碼行數:59,代碼來源:EpsilonSVRegressionExample.java


注:本文中的it.uniroma2.sag.kelp.utils.evaluation.RegressorEvaluator類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。