當前位置: 首頁>>代碼示例>>Java>>正文


Java FixIndexKernelCache類代碼示例

本文整理匯總了Java中it.uniroma2.sag.kelp.kernel.cache.FixIndexKernelCache的典型用法代碼示例。如果您正苦於以下問題:Java FixIndexKernelCache類的具體用法?Java FixIndexKernelCache怎麽用?Java FixIndexKernelCache使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


FixIndexKernelCache類屬於it.uniroma2.sag.kelp.kernel.cache包,在下文中一共展示了FixIndexKernelCache類的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: learnModel

import it.uniroma2.sag.kelp.kernel.cache.FixIndexKernelCache; //導入依賴的package包/類
@BeforeClass
public static void learnModel() {
	trainingSet = new SimpleDataset();
	testSet = new SimpleDataset();
	try {
		trainingSet.populate("src/test/resources/svmTest/binary/binary_train.klp");
		// Read a dataset into a test variable
		testSet.populate("src/test/resources/svmTest/binary/binary_test.klp");
	} catch (Exception e) {
		e.printStackTrace();
		Assert.assertTrue(false);
	}

	// define the positive class
	StringLabel positiveClass = new StringLabel("+1");

	// define the kernel
	Kernel kernel = new LinearKernel("0");

	// add a cache
	kernel.setKernelCache(new FixIndexKernelCache(trainingSet
			.getNumberOfExamples()));

	// define the learning algorithm
	BinaryNuSvmClassification learner = new BinaryNuSvmClassification(kernel,
			positiveClass, 0.5f);

	// learn and get the prediction function
	learner.learn(trainingSet);
	f = learner.getPredictionFunction();
}
 
開發者ID:SAG-KeLP-Legacy,項目名稱:kelp-full,代碼行數:32,代碼來源:BinaryNuSVMTest.java

示例2: learnModel

import it.uniroma2.sag.kelp.kernel.cache.FixIndexKernelCache; //導入依賴的package包/類
@BeforeClass
public static void learnModel() {
	trainingSet = new SimpleDataset();
	testSet = new SimpleDataset();
	try {
		trainingSet.populate("src/test/resources/svmTest/binary/binary_train.klp");
		// Read a dataset into a test variable
		testSet.populate("src/test/resources/svmTest/binary/binary_test.klp");
	} catch (Exception e) {
		e.printStackTrace();
		Assert.assertTrue(false);
	}

	// define the positive class
	StringLabel positiveClass = new StringLabel("+1");

	// define the kernel
	Kernel kernel = new LinearKernel("0");

	// add a cache
	kernel.setKernelCache(new FixIndexKernelCache(trainingSet
			.getNumberOfExamples()));

	// define the learning algorithm
	BinaryCSvmClassification learner = new BinaryCSvmClassification(kernel,
			positiveClass, 1, 1);

	// learn and get the prediction function
	learner.learn(trainingSet);
	f = learner.getPredictionFunction();
}
 
開發者ID:SAG-KeLP-Legacy,項目名稱:kelp-full,代碼行數:32,代碼來源:BinaryCSVMTest.java

示例3: learnModel

import it.uniroma2.sag.kelp.kernel.cache.FixIndexKernelCache; //導入依賴的package包/類
@BeforeClass
public static void learnModel() {
	trainingSet = new SimpleDataset();
	testSet = new SimpleDataset();
	try {
		trainingSet
				.populate("src/test/resources/svmTest/regression/mg_scale.klp");
		// Read a dataset into a test variable
		testSet.populate("src/test/resources/svmTest/regression/mg_scale.klp");
	} catch (Exception e) {
		e.printStackTrace();
		Assert.assertTrue(false);
	}

	// define the regression label
	Label label = new StringLabel("r");

	// define the kernel
	Kernel kernel = new LinearKernel("0");

	// add a cache
	kernel.setKernelCache(new FixIndexKernelCache(trainingSet
			.getNumberOfExamples()));

	// define the learning algorithm
	EpsilonSvmRegression learner = new EpsilonSvmRegression(kernel, label,
			1, 0.1f);

	// learn and get the prediction function
	learner.learn(trainingSet);
	p = learner.getPredictionFunction();
}
 
開發者ID:SAG-KeLP-Legacy,項目名稱:kelp-full,代碼行數:33,代碼來源:EpsilonSVRTest.java

示例4: main

import it.uniroma2.sag.kelp.kernel.cache.FixIndexKernelCache; //導入依賴的package包/類
public static void main(String[] args) throws Exception {
	SimpleDataset trainingSet = new SimpleDataset();
	trainingSet.populate("src/main/resources/mutag/mutag.txt");
	StringLabel positiveClass = new StringLabel("1");

	System.out.println("Training set statistics");
	System.out.print("Examples number ");
	System.out.println(trainingSet.getNumberOfExamples());
	System.out.print("Positive examples ");
	System.out.println(trainingSet
			.getNumberOfPositiveExamples(positiveClass));
	System.out.print("Negative examples ");
	System.out.println(trainingSet
			.getNumberOfNegativeExamples(positiveClass));

	WLSubtreeMapper m = new WLSubtreeMapper(GRAPH_REPRESENTATION_NAME, VECTORIAL_LINEARIZATION_NAME, 4);
	trainingSet.manipulate(m);

	StringLabel targetLabel = new StringLabel("1");

	BinaryClassificationEvaluator evaluator = new BinaryClassificationEvaluator(targetLabel);
    
    LinearKernelCombination comb = new LinearKernelCombination();
    LinearKernel linear = new LinearKernel(VECTORIAL_LINEARIZATION_NAME);
    comb.addKernel(1, linear);
    ShortestPathKernel spk = new ShortestPathKernel(GRAPH_REPRESENTATION_NAME);
    comb.addKernel(1, spk);
    comb.setKernelCache(new FixIndexKernelCache(trainingSet.getNumberOfExamples()));
    BinaryCSvmClassification svmSolver = new BinaryCSvmClassification(comb, targetLabel, 1, 1);
	
    float meanAcc = 0;
    int nFold = 10;
    List<BinaryClassificationEvaluator> evalutators = ExperimentUtils.nFoldCrossValidation(nFold, svmSolver, trainingSet, evaluator);
    
	for(int i=0;i<nFold;i++){
		float accuracy = evalutators.get(i).getPerformanceMeasure("accuracy");
		System.out.println("fold " + (i+1) + " accuracy: " + accuracy);
		meanAcc+=accuracy;
	}
	
	meanAcc/=(float)10;
	System.out.println("MEAN ACC: " + meanAcc);
	
}
 
開發者ID:SAG-KeLP-Legacy,項目名稱:kelp-examples,代碼行數:45,代碼來源:MutagClassification.java

示例5: main

import it.uniroma2.sag.kelp.kernel.cache.FixIndexKernelCache; //導入依賴的package包/類
public static void main(String[] args) throws Exception {
	// The epsilon in loss function of the regressor
	float pReg = 0.1f;
	// The regularization parameter of the regressor
	float c = 2f;
	// The gamma parameter in the RBF kernel
	float gamma = 1f;

	// The label indicating the value considered by the regressor
	Label label = new StringLabel("r");

	// Load the dataset
	SimpleDataset dataset = new SimpleDataset();
	dataset.populate("src/main/resources/sv_regression_test/mg_scale.klp");
	// Split the dataset in train and test datasets
	dataset.shuffleExamples(new Random(0));
	SimpleDataset[] split = dataset.split(0.7f);
	SimpleDataset trainDataset = split[0];
	SimpleDataset testDataset = split[1];

	// Kernel for the first representation (0-index)
	Kernel linear = new LinearKernel("0");
	// Applying the RBF kernel
	Kernel rbf = new RbfKernel(gamma, linear);
	// Applying a cache
	FixIndexKernelCache kernelCache = new FixIndexKernelCache(
			trainDataset.getNumberOfExamples());
	rbf.setKernelCache(kernelCache);

	// instantiate the regressor
	EpsilonSvmRegression regression = new EpsilonSvmRegression(rbf, label,
			c, pReg);

	// learn
	regression.learn(trainDataset);
	// get the prediction function
	RegressionFunction regressor = regression.getPredictionFunction();

	// initializing the performance evaluator
	RegressorEvaluator evaluator = new RegressorEvaluator(
			trainDataset.getRegressionProperties());

	// For each example from the test set
	for (Example e : testDataset.getExamples()) {
		// Predict the value
		Prediction prediction = regressor.predict(e);
		// Print the original and the predicted values
		System.out.println("real value: " + e.getRegressionValue(label)
				+ "\t-\tpredicted value: " + prediction.getScore(label));
		// Update the evaluator
		evaluator.addCount(e, prediction);
	}

	// Get the Mean Squared Error for the targeted label
	float measSquareError = evaluator.getMeanSquaredError(label);

	System.out.println("\nMean Squared Error:\t" + measSquareError);
}
 
開發者ID:SAG-KeLP-Legacy,項目名稱:kelp-examples,代碼行數:59,代碼來源:EpsilonSVRegressionExample.java

示例6: main

import it.uniroma2.sag.kelp.kernel.cache.FixIndexKernelCache; //導入依賴的package包/類
public static void main(String[] args) {
	try {
		// Read a dataset into a trainingSet variable
		SimpleDataset trainingSet = new SimpleDataset();
		trainingSet
				.populate("src/main/resources/sequenceKernelExample/sequenceTrain.txt");

		SimpleDataset testSet = new SimpleDataset();
		testSet.populate("src/main/resources/sequenceKernelExample/sequenceTest.txt");

		// print some statistics
		System.out.println("Training set statistics");
		System.out.print("Examples number ");
		System.out.println(trainingSet.getNumberOfExamples());

		List<Label> classes = trainingSet.getClassificationLabels();

		for (Label l : classes) {
			System.out.println("Training Label " + l.toString() + " "
					+ trainingSet.getNumberOfPositiveExamples(l));
			System.out.println("Training Label " + l.toString() + " "
					+ trainingSet.getNumberOfNegativeExamples(l));

			System.out.println("Test Label " + l.toString() + " "
					+ testSet.getNumberOfPositiveExamples(l));
			System.out.println("Test Label " + l.toString() + " "
					+ testSet.getNumberOfNegativeExamples(l));
		}

		// Kernel for the first representation (0-index)
		Kernel kernel = new SequenceKernel("SEQUENCE", 2, 1);
		// Normalize the linear kernel
		NormalizationKernel normalizedKernel = new NormalizationKernel(
				kernel);
		kernel.setSquaredNormCache(new FixIndexSquaredNormCache(trainingSet.getNumberOfExamples()));
		kernel.setKernelCache(new FixIndexKernelCache(trainingSet.getNumberOfExamples()));
		// instantiate an svmsolver
		BinaryCSvmClassification svmSolver = new BinaryCSvmClassification();
		svmSolver.setKernel(normalizedKernel);
		svmSolver.setCp(1);
		svmSolver.setCn(1);

		OneVsAllLearning ovaLearner = new OneVsAllLearning();
		ovaLearner.setBaseAlgorithm(svmSolver);
		ovaLearner.setLabels(classes);

		// learn and get the prediction function
		ovaLearner.learn(trainingSet);
		Classifier f = ovaLearner.getPredictionFunction();

		// classify examples and compute some statistics
		MulticlassClassificationEvaluator ev = new MulticlassClassificationEvaluator(
				trainingSet.getClassificationLabels());

		for (Example e : testSet.getExamples()) {
			ClassificationOutput p = f.predict(testSet.getNextExample());
			ev.addCount(e, p);
		}

		System.out.println("Accuracy: "
				+ ev.getPerformanceMeasure("accuracy"));
	} catch (Exception e1) {
		e1.printStackTrace();
	}
}
 
開發者ID:SAG-KeLP-Legacy,項目名稱:kelp-examples,代碼行數:66,代碼來源:SequenceKernelExample.java


注:本文中的it.uniroma2.sag.kelp.kernel.cache.FixIndexKernelCache類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。