當前位置: 首頁>>代碼示例>>Java>>正文


Java SemanticGraph類代碼示例

本文整理匯總了Java中edu.stanford.nlp.semgraph.SemanticGraph的典型用法代碼示例。如果您正苦於以下問題:Java SemanticGraph類的具體用法?Java SemanticGraph怎麽用?Java SemanticGraph使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


SemanticGraph類屬於edu.stanford.nlp.semgraph包,在下文中一共展示了SemanticGraph類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: getSubgraphFromWords

import edu.stanford.nlp.semgraph.SemanticGraph; //導入依賴的package包/類
/**
 * Given the sentence semantic graph and a list of words, get a subgraph containing just the words in the list
 * 'words'. Each typed dependency has each word from the list as a governor.
 * @param sg: sentence semantic graph
 * @param words: list of words which should contain the semantic graph
 * @return subgraph containing the words from 'words'
 * TODO: this needs to be double checked! In some cases we have weird graphs, where there are words missing. 
 * E.g. the sentence 120 from NYT "The International ... ". Try this for getting the subgraph when the source is 
 * detected.
 */
public static SemanticGraph getSubgraphFromWords(SemanticGraph sg, ObjectArrayList<IndexedWord> words){        
    // Determining the root
    int minInd = Integer.MAX_VALUE;
    IndexedWord root = new IndexedWord();
    for (IndexedWord w: words){
        if (w.index() < minInd){
            minInd = w.index();
            root = w;
        }
    }
    
    // Getting the typed dependency
    ObjectArrayList<TypedDependency> tds = new ObjectArrayList<TypedDependency>();
    for (TypedDependency td: sg.typedDependencies()){
        if (words.contains(td.gov()) && words.contains(td.dep()))
            tds.add(td);
    }
    
    // Create the semantic graph
    TreeGraphNode rootTGN = new TreeGraphNode(new CoreLabel(root));
    EnglishGrammaticalStructure gs = new EnglishGrammaticalStructure(tds, rootTGN);
    SemanticGraph phraseSg = SemanticGraphFactory.generateUncollapsedDependencies(gs);
    
    return phraseSg;
}
 
開發者ID:gkiril,項目名稱:minie,代碼行數:36,代碼來源:CoreNLPUtils.java

示例2: getSubgraph

import edu.stanford.nlp.semgraph.SemanticGraph; //導入依賴的package包/類
private static SemanticGraph getSubgraph(ObjectArrayList<TypedDependency> tds, SemanticGraph sg, IndexedWord parent,
        SemanticGraphEdge e, int maxPathLength, ObjectArrayList<IndexedWord> words){
    Set<IndexedWord> children = sg.getChildren(parent);
    
    for (IndexedWord child: children){
        if (((sg.getShortestDirectedPathEdges(sg.getFirstRoot(), child)).size() <= maxPathLength) &&
                words.contains(child)){   
            e = sg.getEdge(parent, child);
            tds.add(new TypedDependency(e.getRelation(), parent, child));
            if (sg.hasChildren(child))
                getSubgraph(tds, sg, child, e, maxPathLength, words);
        } // else break;
    }

    TreeGraphNode rootTGN = new TreeGraphNode(new CoreLabel(parent));
    EnglishGrammaticalStructure gs = new EnglishGrammaticalStructure(tds, rootTGN);
    return SemanticGraphFactory.generateUncollapsedDependencies(gs);
}
 
開發者ID:gkiril,項目名稱:minie,代碼行數:19,代碼來源:CoreNLPUtils.java

示例3: setQuantitiesFromWordList

import edu.stanford.nlp.semgraph.SemanticGraph; //導入依賴的package包/類
/**
 * A helper function used in detectQuantities. When we have a list of quantity words, quantity edges and the 
 * sentence semantic graph, add quantities to the list of quantities and clear the reusable lists. 
 *  If there are quantities in the phrase, replace them with the word SOME_n_i, where i = the place of the quantity
 * (0 - subject, 1 - relation, 2 - object) and j = # of quantity within the phrase.
 * 
 * @param qWords: list of quantity indexed words
 * @param qEdges: list of semantic graph edges (reusable)
 * @param sentSemGraph: sentence semantic graph
 * @param i: used for ID-ying purposes of the quantities' annotations 
 * @param j: used for ID-ying purposes of the quantities' annotations 
 */
private void setQuantitiesFromWordList(ObjectArrayList<IndexedWord> qWords, ObjectArrayList<SemanticGraphEdge> qEdges, 
                                        SemanticGraph sentSemGraph, int i, int j){
    // Quantity ID
    StringBuffer sbId = new StringBuffer();
    if (i == 0)
        sbId.append(Quantity.SUBJECT_ID);
    else if (i == 1)
        sbId.append(Quantity.RELATION_ID);
    else
        sbId.append(Quantity.OBJECT_ID);
    sbId.append(CHARACTER.UNDERSCORE);
    sbId.append(j + 1); // Indexing starts from 1
    
    for (IndexedWord w: qWords){
        qEdges.add(sentSemGraph.getEdge(sentSemGraph.getParent(w), w));
    }
    
    // Add the quantity to the list
    this.quantities.add(new Quantity(qWords, qEdges, sbId.toString()));
    
    // Clear the lists
    qWords.clear();
    qEdges.clear();
}
 
開發者ID:gkiril,項目名稱:minie,代碼行數:37,代碼來源:AnnotatedPhrase.java

示例4: getPolarity

import edu.stanford.nlp.semgraph.SemanticGraph; //導入依賴的package包/類
/**
 * Given a phrase and its sentence semantic graph, detect the polarity type. If negative polarity is found, add the 
 * negative words and edges to their appropriate lists from the Polarity class.
 * 
 * @param phrase: phrase (essentially, list of words, which are part of some sentence)
 * @param sentenceSemGraph: the semantic graph of the phrase's sentence
 * @return polarity object
 */
public static Polarity getPolarity(AnnotatedPhrase phrase, SemanticGraph sentenceSemGraph){
    Polarity pol = new Polarity();
    
    for (int i = 0; i < phrase.getWordList().size(); i++){
        // Check for negative adverbs
        if (CoreNLPUtils.isAdverb(phrase.getWordList().get(i).tag())){
            if (Polarity.NEG_ADVERBS.contains(phrase.getWordList().get(i).lemma())){
                Polarity.setNegPol(pol, phrase.getWordList().get(i), sentenceSemGraph.getEdge(
                                                                sentenceSemGraph.getParent(phrase.getWordList().get(i)), 
                                                                phrase.getWordList().get(i)));
            }
        }
        // Check for negative determiners
        else if (phrase.getWordList().get(i).tag().equals(POS_TAG.DT)){
            if (Polarity.NEG_DETERMINERS.contains(phrase.getWordList().get(i).lemma())){
                Polarity.setNegPol(pol, phrase.getWordList().get(i), sentenceSemGraph.getEdge(
                        sentenceSemGraph.getParent(phrase.getWordList().get(i)), 
                        phrase.getWordList().get(i)));
            }
        }
    }
    
    return pol;
}
 
開發者ID:gkiril,項目名稱:minie,代碼行數:33,代碼來源:Polarity.java

示例5: minimize

import edu.stanford.nlp.semgraph.SemanticGraph; //導入依賴的package包/類
/** 
 * Given an input sentence, dependency parse, mode and a dictionary, make extractions and then minimize them accordingly.
 * The parsing occurs OUTSIDE this function.
 * 
 * @param sentence - input sentence
 * @param sg - semantic graph object (dependency parse of the sentence)
 * @param mode - minimization mode
 * @param d - dictionary (for MinIE-D)
 */
public void minimize(String sentence, SemanticGraph sg, Mode mode, Dictionary d) {
    // Run ClausIE first
    ClausIE clausie = new ClausIE();
    clausie.setSemanticGraph(sg);
    clausie.detectClauses();
    clausie.generatePropositions(clausie.getSemanticGraph());
    
    // Start minimizing by annotating
    this.setSemanticGraph(clausie.getSemanticGraph());
    this.setPropositions(clausie);
    this.setPolarity();
    this.setModality();
    
    // Minimize according to the modes (COMPLETE mode doesn't minimize) 
    if (mode == Mode.SAFE)
        this.minimizeSafeMode();
    else if (mode == Mode.DICTIONARY)
        this.minimizeDictionaryMode(d.words());
    else if (mode == Mode.AGGRESSIVE)
        this.minimizeAggressiveMode();
    
    this.removeDuplicates();
}
 
開發者ID:gkiril,項目名稱:minie,代碼行數:33,代碼來源:MinIE.java

示例6: minimizeSubject

import edu.stanford.nlp.semgraph.SemanticGraph; //導入依賴的package包/類
public static void minimizeSubject(AnnotatedPhrase subject, SemanticGraph sg, ObjectOpenHashSet<String> collocations){
    // Do the safe minimization first
    SubjSafeMinimization.minimizeSubject(subject, sg);
    
    // If the subject is frequent, don't minimize anything
    if (collocations.contains(CoreNLPUtils.listOfWordsToLemmaString(subject.getWordList()).toLowerCase())){
        return;
    }
    
    // Minimization object
    Minimization simp = new Minimization(subject, sg, collocations);
    
    // remWords: list of words to be removed (reusable variable)
    // matchWords: list of matched words from the regex (reusable variable)
    List<CoreMap> remWords = new ArrayList<>();
    List<CoreMap> matchWords = new ArrayList<>(); 
    
    // Safe minimization on the noun phrases and named entities within the subj. phrase
    simp.nounPhraseDictMinimization(remWords, matchWords);
    simp.removeVerbsBeforeNouns(remWords, matchWords);
    simp.namedEntityDictionaryMinimization(remWords, matchWords);
}
 
開發者ID:gkiril,項目名稱:minie,代碼行數:23,代碼來源:SubjDictionaryMinimization.java

示例7: minimizeRelation

import edu.stanford.nlp.semgraph.SemanticGraph; //導入依賴的package包/類
/**
 * Minimize only the relations that are considered to have "non-frequent patterns"
 * @param rel: the relation phrase
 * @param sg: semantic graph of the sentence
 * @param freqRels: dictionary of multi-word expressions (frequent relations)
 */
public static void minimizeRelation(AnnotatedPhrase rel, SemanticGraph sg, ObjectOpenHashSet<String> collocations){
    // Do the safe minimization first
    RelSafeMinimization.minimizeRelation(rel, sg);
    
    // If the subject is frequent, don't minimize anything
    if (collocations.contains(CoreNLPUtils.listOfWordsToLemmaString(rel.getWordList()).toLowerCase())){
        return;
    }
    
    // Do the safe minimization first
    RelSafeMinimization.minimizeRelation(rel, sg);
    
    // remWords: list of words to be removed (reusable variable)
    // matchWords: list of matched words from the regex (reusable variable)
    List<CoreMap> remWords = new ArrayList<>();
    List<CoreMap> matchWords = new ArrayList<>(); 
    
    // Move to the dict. minimization of the noun phrases within the relation
    Minimization simp = new Minimization(rel, sg, collocations);
    simp.nounPhraseDictMinimization(remWords, matchWords);
    simp.namedEntityDictionaryMinimization(remWords, matchWords);
}
 
開發者ID:gkiril,項目名稱:minie,代碼行數:29,代碼來源:RelDictionaryMinimization.java

示例8: minimizeObject

import edu.stanford.nlp.semgraph.SemanticGraph; //導入依賴的package包/類
/**
 * Minimize only the objects that are considered to have "non-frequent patterns"
 * @param obj: the object phrase
 * @param sg: semantic graph of the sentence
 * @param freqObjs: dictionary of multi-word expressions (frequent objects)
 */
public static void minimizeObject(AnnotatedPhrase obj, SemanticGraph sg, ObjectOpenHashSet<String> collocations){
    // Do the safe minimization first
    ObjSafeMinimization.minimizeObject(obj, sg);
    
    // If the object is frequent, don't minimize anything
    if (collocations.contains(CoreNLPUtils.listOfWordsToLemmaString(obj.getWordList()).toLowerCase())){
        return;
    }
    
    // Minimization object
    Minimization simp = new Minimization(obj, sg, collocations);
    
    // remWords: list of words to be removed (reusable variable)
    // matchWords: list of matched words from the regex (reusable variable)
    List<CoreMap> remWords = new ArrayList<>();
    List<CoreMap> matchWords = new ArrayList<>(); 
    
    // Safe minimization on the noun phrases and named entities within the subj. phrase
    simp.nounPhraseDictMinimization(remWords, matchWords);
    simp.namedEntityDictionaryMinimization(remWords, matchWords);
}
 
開發者ID:gkiril,項目名稱:minie,代碼行數:28,代碼來源:ObjDictionaryMinimization.java

示例9: isDescendant

import edu.stanford.nlp.semgraph.SemanticGraph; //導入依賴的package包/類
/** Checks if a node depending on one conjoint also depends to the other */
//"He buys and sells electronic products" "Is products depending on both sells and buys?"
private static boolean isDescendant(IndexedWord checkWord, IndexedWord pivotWord, IndexedWord elementWord, 
        SemanticGraph semGraph) {
    Collection <IndexedWord> roots = semGraph.getRoots();
    
    while (!roots.contains(elementWord)){
        if (!semGraph.getShortestUndirectedPathNodes(elementWord, pivotWord).isEmpty())
            break;
        elementWord = semGraph.getParent(elementWord);
    }
    List<SemanticGraphEdge> path = semGraph.getShortestDirectedPathEdges(elementWord, checkWord);
    if (path == null)
        return false;
    else
        return true;
}
 
開發者ID:gkiril,項目名稱:minie,代碼行數:18,代碼來源:ProcessConjunctions.java

示例10: generatePhrase

import edu.stanford.nlp.semgraph.SemanticGraph; //導入依賴的package包/類
/** Generates a textual representation of a given constituent plus a set of words*/
private Phrase generatePhrase(IndexedConstituent constituent, Collection<IndexedWord> words, SemanticGraph sGraph) {
    Phrase phrase = new Phrase();
    
    if (constituent.isPrepositionalPhrase(sGraph)) {
        // TODO: before, it was: constituent.getRoot().originalText(). For some reason, in the case for
        // "in Los Angeles", the word "in" returns empty string for originalText(), and the actual word for word().
        // Check if this compromises the code in some way
        // TODO: see if you could find a faster way to make this check (not to go through the list of all excluded
        // words, for instance: use a flag as an input parameter)
        if (!constituent.excludedVertexes.contains(constituent.getRoot())){
            phrase.addWordToList(constituent.getRoot());
        }
    }

    for (IndexedWord word : words) {
        if (DpUtils.filterTokens(word))
            continue;
        phrase.addWordToList(word);
    }

    return phrase;
}
 
開發者ID:gkiril,項目名稱:minie,代碼行數:24,代碼來源:PropositionGenerator.java

示例11: findTypeDependency

import edu.stanford.nlp.semgraph.SemanticGraph; //導入依賴的package包/類
/**
 * Finds type dependencies in semantics graph.
 */
private TypedDependency findTypeDependency(SemanticGraph semanticGraph, CoreLabel coreLabel) {
	Collection<TypedDependency> deps = semanticGraph.typedDependencies();

	for (TypedDependency dependency : deps) {
		if (dependency.dep().backingLabel() == coreLabel) {
			return dependency;
		}
	}

	//throw new RuntimeException("TypeDependency not found");
	return null;
}
 
開發者ID:igr,項目名稱:parlo,代碼行數:16,代碼來源:Token.java

示例12: findDescendantRelativeRelation

import edu.stanford.nlp.semgraph.SemanticGraph; //導入依賴的package包/類
/** Finds the first occurrence of a grammatical relation or its descendants for a relative pronoun */
public static SemanticGraphEdge findDescendantRelativeRelation(SemanticGraph semanticGraph, IndexedWord root, 
        GrammaticalRelation rel) {
    List<SemanticGraphEdge> outedges = semanticGraph.getOutEdgesSorted(root);
    for (SemanticGraphEdge e : outedges) {
        if (e.getDependent().tag().charAt(0) == 'W' && rel.isAncestor(e.getRelation())) {
            return e;
        } else
            return findDescendantRelativeRelation(semanticGraph, e.getDependent(), rel);
    }
    return null;
}
 
開發者ID:gkiril,項目名稱:minie,代碼行數:13,代碼來源:DpUtils.java

示例13: removeEdges

import edu.stanford.nlp.semgraph.SemanticGraph; //導入依賴的package包/類
/** Removes some edges from the given semantic graph.
 * 
 * This method traverses the semantic graph starting from the given root. An edge is removed if
 * (1) its child appears in <code>excludeVertexes</code>, (2) its relation appears in
 * <code>excludeRelations</code>, or (3) the edge has the root as parent and its relation
 * appears in <code>excludeRelationsTop</code>. */
public static void removeEdges(SemanticGraph graph, IndexedWord root, Collection<IndexedWord> excludeVertexes,
        Collection<GrammaticalRelation> excludeRelations, Collection<GrammaticalRelation> excludeRelationsTop) {
    if (!excludeVertexes.contains(root)) {
        Set<SemanticGraphEdge> edgesToRemove = new HashSet<SemanticGraphEdge>();
        subgraph(graph, root, excludeVertexes, excludeRelations, excludeRelationsTop, edgesToRemove, 0);
        for (SemanticGraphEdge edge : edgesToRemove) {
            graph.removeEdge(edge);
        }
    }
}
 
開發者ID:gkiril,項目名稱:minie,代碼行數:17,代碼來源:DpUtils.java

示例14: subgraph

import edu.stanford.nlp.semgraph.SemanticGraph; //導入依賴的package包/類
/** Implementation for
 * {@link #removeEdges(SemanticGraph, IndexedWord, Collection, Collection, Collection)} */
private static int subgraph(SemanticGraph graph, IndexedWord root, Collection<IndexedWord> excludeVertexes,
        Collection<GrammaticalRelation> excludeRelations, Collection<GrammaticalRelation> excludeRelationsTop,
        Collection<SemanticGraphEdge> edgesToRemove, int counter) {
    
    /* TODO: In some sentences there is infinite recursion. Dirty fix to stop it. 
     
     Example sentence:
     "Policies on electronic tickets differ ''from airline to airline and airport to airport,'' said Ms. McInerney, 
     whose group is working with the airline industry on e-ticket policies and the matter of standardizing itineraries 
     and receipts, perhaps with a universal template to create more readily verifiable printouts that carry uniform 
     information like a ticket number that can be matched to an airline computer reservation."
 
     */
    counter++;
    if (counter > MAX_RECURSION_ITERATIONS){
        return counter;
    }

    List<SemanticGraphEdge> edges = graph.getOutEdgesSorted(root);
    for (SemanticGraphEdge e : edges) {
        IndexedWord child = e.getDependent();
        if (excludeVertexes.contains(child) || excludeRelations.contains(e.getRelation())
                || excludeRelationsTop.contains(e.getRelation())) {
            edgesToRemove.add(graph.getEdge(root, child));
        } else {
            counter = subgraph(graph, child, excludeVertexes, excludeRelations, 
                    Collections.<GrammaticalRelation> emptySet(), edgesToRemove, counter);
        }
    }
    
    return counter;
}
 
開發者ID:gkiril,項目名稱:minie,代碼行數:35,代碼來源:DpUtils.java

示例15: disconectClauses

import edu.stanford.nlp.semgraph.SemanticGraph; //導入依賴的package包/類
/** Disconnects independent clauses by removing the edge representing the coordinating conjunction */
public static void disconectClauses(SemanticGraph graph, Constituent constituent) {
    List<SemanticGraphEdge> outedges = graph.getOutEdgesSorted(((IndexedConstituent) constituent).getRoot());
    for (int i = 0; i < outedges.size(); i++) {
        SemanticGraphEdge e = outedges.get(i);
        if (DpUtils.isAnyConj(e)) {
            IndexedWord child = e.getDependent();
            List<SemanticGraphEdge> outNewRoot = graph.getOutEdgesSorted(child);
            SemanticGraphEdge sub = DpUtils.findFirstOfRelationOrDescendent(outNewRoot, 
                    EnglishGrammaticalRelations.SUBJECT);
            if (sub != null)
                graph.removeEdge(e);
        }
    }
}
 
開發者ID:gkiril,項目名稱:minie,代碼行數:16,代碼來源:DpUtils.java


注:本文中的edu.stanford.nlp.semgraph.SemanticGraph類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。