本文整理匯總了Java中edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation類的典型用法代碼示例。如果您正苦於以下問題:Java SentencesAnnotation類的具體用法?Java SentencesAnnotation怎麽用?Java SentencesAnnotation使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
SentencesAnnotation類屬於edu.stanford.nlp.ling.CoreAnnotations包,在下文中一共展示了SentencesAnnotation類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: extractSentences
import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation; //導入依賴的package包/類
/**
* Split a document into array of sentences
*
* @param text
* @return
* @throws Exception
*/
public static String[] extractSentences(String text) throws Exception {
Properties props = new Properties();
props.put("annotators", "tokenize, ssplit");
StanfordCoreNLP pipeline = new StanfordCoreNLP();
Annotation document = new Annotation(text);
pipeline.annotate(document);
List<CoreMap> sentences = document.get(SentencesAnnotation.class);
String[] sentenceList = new String[sentences.size()];
for (int i = 0; i < sentenceList.length; i++) {
CoreMap sentence = sentences.get(i);
sentenceList[i] = sentence.toString();
}
return sentenceList;
}
示例2: lemmatize
import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation; //導入依賴的package包/類
public List<List<String>> lemmatize(String documentText)
{
List<List<String>> lemmas = new ArrayList<List<String>>();
// create an empty Annotation just with the given text
Annotation document = new Annotation(documentText);
// run all Annotators on this text
this.parser.annotate(document);
// Iterate over all of the sentences found
List<CoreMap> sentences = document.get(SentencesAnnotation.class);
for(CoreMap sentence: sentences) {
// Iterate over all tokens in a sentence
List<String> sentence_lemmas = new ArrayList<String>();
for (CoreLabel token: sentence.get(TokensAnnotation.class)) {
// Retrieve and add the lemma for each word into the
// list of lemmas
sentence_lemmas.add(token.get(LemmaAnnotation.class));
}
lemmas.add(sentence_lemmas);
}
return lemmas;
}
示例3: tagAndTokenize
import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation; //導入依賴的package包/類
public Pair<List<String>, List<String>> tagAndTokenize(String documentText)
{
List<String> tags = new ArrayList<String>();
List<String> tokens = new ArrayList<String>();
// create an empty Annotation just with the given text
Annotation document = new Annotation(documentText);
// run all Annotators on this text
this.parser.annotate(document);
// Iterate over all of the sentences found
List<CoreMap> sentences = document.get(SentencesAnnotation.class);
for(CoreMap sentence: sentences) {
// Iterate over all tokens in a sentence
for (CoreLabel token: sentence.get(TokensAnnotation.class)) {
// Retrieve and add the lemma for each word into the
// list of lemmas
tags.add(token.get(PartOfSpeechAnnotation.class));
tokens.add(token.word());
}
}
return new Pair<List<String>, List<String>>(tags, tokens);
}
示例4: tag
import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation; //導入依賴的package包/類
public List<String> tag(String documentText)
{
List<String> tags = new ArrayList<String>();
// create an empty Annotation just with the given text
Annotation document = new Annotation(documentText);
// run all Annotators on this text
this.parser.annotate(document);
// Iterate over all of the sentences found
List<CoreMap> sentences = document.get(SentencesAnnotation.class);
for(CoreMap sentence: sentences) {
// Iterate over all tokens in a sentence
for (CoreLabel token: sentence.get(TokensAnnotation.class)) {
// Retrieve and add the lemma for each word into the
// list of lemmas
tags.add(token.get(PartOfSpeechAnnotation.class));
}
}
return tags;
}
示例5: traffer
import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation; //導入依賴的package包/類
public static String traffer(String word) {
List<String> lemmas = new LinkedList<String>();
// create an empty Annotation just with the given text
Annotation document = new Annotation(word);
// run all Annotators on this text
stanfordCoreNLP.annotate(document);
// Iterate over all of the sentences found
List<CoreMap> sentences = document.get(SentencesAnnotation.class);
for (CoreMap sentence : sentences) {
// Iterate over all tokens in a sentence
for (CoreLabel token : sentence.get(TokensAnnotation.class)) {
// Retrieve and add the lemma for each word into the list of lemmas
lemmas.add(token.get(LemmaAnnotation.class));
}
}
if (lemmas.size() != 1) {
System.out.println("bug!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!");
}
return lemmas.get(0);
}
示例6: lemmatize
import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation; //導入依賴的package包/類
/**
* Takes a string and returns a list of lemmas.
* @param documentText
* @return
*/
public List<String> lemmatize(String documentText)
{
List<String> lemmas = new LinkedList<String>();
// create an empty Annotation just with the given text
Annotation document = new Annotation(documentText);
// run all Annotators on this text
this.pipeline.annotate(document);
// Iterate over all of the sentences found
List<CoreMap> sentences = document.get(SentencesAnnotation.class);
for(CoreMap sentence: sentences) {
// Iterate over all tokens in a sentence
for (CoreLabel token: sentence.get(TokensAnnotation.class)) {
// Retrieve and add the lemma for each word into the list of lemmas
lemmas.add(token.get(LemmaAnnotation.class));
}
}
return lemmas;
}
示例7: annotationToSentenceList
import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation; //導入依賴的package包/類
private static List<Sentence> annotationToSentenceList(Annotation anno, int cOffset, final AnalyticUUIDGenerator gen) {
List<Sentence> slist = new ArrayList<>();
anno.get(SentencesAnnotation.class).stream()
.map(cm -> {
// LOGGER.info("Got Sentence offset: {}", cm.toString());
try {
return new CoreMapWrapper(cm, gen).toSentence(cOffset);
} catch (AnalyticException e) {
throw new RuntimeException(e);
}
})
.sequential()
.forEach(st -> slist.add(st));
return slist;
}
開發者ID:hltcoe,項目名稱:concrete-stanford-deprecated2,代碼行數:17,代碼來源:ConcreteStanfordTokensSentenceAnalytic.java
示例8: getObservedMWEs
import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation; //導入依賴的package包/類
/**
* Create the observed MWEs in the text
* @param props the properties
* @param text the text
* @return the observed MWEs in the text
*/
protected List<String> getObservedMWEs(Properties props, String text) {
StanfordCoreNLP pipeline = new StanfordCoreNLP(props);
// create an Annotation with the text
Annotation document = new Annotation(text);
// run the Annotators on the text
pipeline.annotate(document);
// construct observed
List<CoreMap> sentences = document.get(SentencesAnnotation.class);
List<String> mwe_observed = new ArrayList<>();
for(CoreMap sentence: sentences) {
for (IMWE<IToken> mwe: sentence.get(JMWEAnnotation.class)) {
mwe_observed.add(mwe.getForm());
}
}
return mwe_observed;
}
示例9: parsingTest
import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation; //導入依賴的package包/類
private static void parsingTest()
{
// String exampleText = "The software developer who inserted a major security flaw into OpenSSL 1.2.4.8, using the file foo/bar/blah.php has said the error was \"quite trivial\" despite the severity of its impact, according to a new report. The Sydney Morning Herald published an interview today with Robin Seggelmann, who added the flawed code to OpenSSL, the world's most popular library for implementing HTTPS encryption in websites, e-mail servers, and applications. The flaw can expose user passwords and potentially the private key used in a website's cryptographic certificate (whether private keys are at risk is still being determined). This is a new paragraph about Apache Tomcat's latest update 7.0.1.";
String exampleText = "Microsoft Windows 7 before SP1 has Sun Java cross-site scripting vulnerability Java SE in file.php (refer to CVE-2014-1234).";
// String exampleText = "Oracle DBRM has vulnerability in ABCD plug-in via abcd.1234 (found on abcd.com).";
EntityLabeler labeler = new EntityLabeler();
Annotation doc = labeler.getAnnotatedDoc("My Doc", exampleText);
List<CoreMap> sentences = doc.get(SentencesAnnotation.class);
for ( CoreMap sentence : sentences)
{
for ( CoreLabel token : sentence.get(TokensAnnotation.class))
{
System.out.println(token.get(TextAnnotation.class) + "\t" + token.get(CyberAnnotation.class));
}
System.out.println("Entities:\n" + sentence.get(CyberEntityMentionsAnnotation.class));
System.out.println("Parse Tree:\n" + sentence.get(TreeAnnotation.class));
}
}
示例10: getExampleTextFromSerGz
import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation; //導入依賴的package包/類
private static String getExampleTextFromSerGz(File f)
{
String result = "";
Annotation deserDoc = EntityLabeler.deserializeAnnotatedDoc(f.getAbsolutePath());
List<CoreMap> sentences = deserDoc.get(SentencesAnnotation.class);
for (int sentencenum = 0; sentencenum < sentences.size(); sentencenum++)
{
CoreMap sentence = sentences.get(sentencenum);
List<CoreLabel> labels = sentence.get(TokensAnnotation.class);
for (int i = 0; i < labels.size(); i++)
{
CoreLabel token = labels.get(i);
String tokenstring = token.get(TextAnnotation.class);
result += " " + tokenstring;
}
result = result.trim() + "\n";
}
return result;
}
示例11: lemmatize
import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation; //導入依賴的package包/類
public static List<String> lemmatize(String documentText){
List<String> lemmas = new LinkedList<String>();
// create an empty Annotation just with the given text
Annotation document = new Annotation(documentText);
// run all Annotators on this text
pipeline.annotate(document);
// Iterate over all of the sentences found
List<CoreMap> sentences = document.get(SentencesAnnotation.class);
for(CoreMap sentence: sentences) {
// Iterate over all tokens in a sentence
for (CoreLabel token: sentence.get(TokensAnnotation.class)) {
// Retrieve and add the lemma for each word into the list of lemmas
lemmas.add(token.get(LemmaAnnotation.class));
}
}
return lemmas;
}
示例12: lemmatize
import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation; //導入依賴的package包/類
public List<String> lemmatize(String documentText) {
List<String> lemmas = new LinkedList<String>();
// Create an empty Annotation just with the given text
Annotation document = new Annotation(documentText);
// run all Annotators on this text
this.pipeline.annotate(document);
// Iterate over all of the sentences found
List<CoreMap> sentences = document.get(SentencesAnnotation.class);
for (CoreMap sentence : sentences) {
// Iterate over all tokens in a sentence
for (CoreLabel token : sentence.get(TokensAnnotation.class)) {
// Retrieve and add the lemma for each word into the
// list of lemmas
lemmas.add(token.get(LemmaAnnotation.class));
}
}
return lemmas;
}
示例13: main
import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation; //導入依賴的package包/類
public static void main(String[] args) {
// String parse = "\nasfd\n\ndaf";
// String[] lines = parse.split("\n");
// System.out.println(lines.length);
// System.exit(0);
X.prop.put("tokenized", "true");
X.prop.put("singleSentences", "true");
initPipeline(true, true);
Annotation ann = new Annotation(
"BOSTON 69 65 .515 5 1/2\n1. Michelle Freeman ( Jamaica ) 12.71 seconds");
pipeline.annotate(ann);
for (CoreMap sent : ann.get(SentencesAnnotation.class)) {
for (CoreLabel token : sent.get(TokensAnnotation.class)) {
logger.info(token.get(TextAnnotation.class));
}
logger.info("sentence done");
}
}
示例14: parse
import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation; //導入依賴的package包/類
public static void parse(FigerSystem sys, int lineId, String text) {
Annotation annotation = new Annotation(text);
Preprocessing.pipeline.annotate(annotation);
// for each sentence
int sentId = 0;
for (CoreMap sentence : annotation.get(SentencesAnnotation.class)) {
// System.out.println("[l" + i + "][s"
// + sentId + "]tokenized sentence="
// + StringUtils.joinWithOriginalWhiteSpace(sentence
// .get(TokensAnnotation.class)));
List<Pair<Integer, Integer>> entityMentionOffsets = getNamedEntityMentions(sentence);
for (Pair<Integer, Integer> offset : entityMentionOffsets) {
String label = sys.predict(annotation, sentId,
offset.first, offset.second);
String mention = StringUtils.joinWithOriginalWhiteSpace(sentence.get(
TokensAnnotation.class).subList(offset.first, offset.second));
System.out.println("[l" + lineId + "][s" + sentId + "]mention"
+ mention + "(" + offset.first + ","
+ offset.second + ") = " + mention + ", pred = "
+ label);
}
sentId++;
}
}
示例15: parse
import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation; //導入依賴的package包/類
public static void parse(ParseStanfordFigerReverb sys, int lineId, String text) {
Annotation annotation = new Annotation(text);
Preprocessing.pipeline.annotate(annotation);
// for each sentence
int sentId = 0;
for (CoreMap sentence : annotation.get(SentencesAnnotation.class)) {
// System.out.println("[l" + i + "][s"
// + sentId + "]tokenized sentence="
// + StringUtils.joinWithOriginalWhiteSpace(sentence
// .get(TokensAnnotation.class)));
List<Pair<Integer, Integer>> entityMentionOffsets = getNamedEntityMentions(sentence);
for (Pair<Integer, Integer> offset : entityMentionOffsets) {
String label = sys.predict(annotation, sentId, offset.first, offset.second);
String mention = StringUtils.joinWithOriginalWhiteSpace(
sentence.get(TokensAnnotation.class).subList(offset.first, offset.second));
System.out.println("[l" + lineId + "][s" + sentId + "]mention" + mention + "(" + offset.first + ","
+ offset.second + ") = " + mention + ", pred = " + label);
}
sentId++;
}
}