本文整理匯總了Java中edu.stanford.nlp.io.PrintFile類的典型用法代碼示例。如果您正苦於以下問題:Java PrintFile類的具體用法?Java PrintFile怎麽用?Java PrintFile使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
PrintFile類屬於edu.stanford.nlp.io包,在下文中一共展示了PrintFile類的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: processResults
import edu.stanford.nlp.io.PrintFile; //導入依賴的package包/類
private void processResults(TestSentence testS,
PrintFile wordsFile, PrintFile unknDictFile,
PrintFile topWordsFile, boolean verboseResults) {
numSentences++;
testS.writeTagsAndErrors(testS.finalTags, unknDictFile, verboseResults);
if (writeUnknDict) testS.printUnknown(numSentences, unknDictFile);
if (writeTopWords) testS.printTop(topWordsFile);
numWrong = numWrong + testS.numWrong;
numRight = numRight + testS.numRight;
unknownWords = unknownWords + testS.numUnknown;
numWrongUnknown = numWrongUnknown + testS.numWrongUnknown;
if (testS.numWrong == 0) {
numCorrectSentences++;
}
if (verboseResults) {
System.err.println("Sentence number: " + numSentences + "; length " + (testS.size-1) +
"; correct: " + testS.numRight + "; wrong: " + testS.numWrong +
"; unknown wrong: " + testS.numWrongUnknown);
System.err.println(" Total tags correct: " + numRight + "; wrong: " + numWrong +
"; unknown wrong: " + numWrongUnknown);
}
}
示例2: runTraining
import edu.stanford.nlp.io.PrintFile; //導入依賴的package包/類
/**
* Trains a tagger model.
*
* @param config Properties giving parameters for the training run
*/
private static void runTraining(TaggerConfig config)
throws IOException
{
Date now = new Date();
System.err.println("## tagger training invoked at " + now + " with arguments:");
config.dump();
Timing tim = new Timing();
PrintFile log = new PrintFile(config.getModel() + ".props");
log.println("## tagger training invoked at " + now + " with arguments:");
config.dump(log);
log.close();
trainAndSaveModel(config);
tim.done("Training POS tagger");
}
示例3: print
import edu.stanford.nlp.io.PrintFile; //導入依賴的package包/類
public void print(String filename) {
try {
PrintFile pf = new PrintFile(filename);
pf.println(" Problem printing ");
data.print(pf);
pf.println(" Function printing ");
for (int i = 0; i < fSize; i++) {
functions.get(i).print(pf);
}
} catch (Exception e) {
System.out.println("Exception in Problem.print()");
}
}
示例4: print
import edu.stanford.nlp.io.PrintFile; //導入依賴的package包/類
public void print(PrintFile pf) {
pf.println(" Experiments : ");
for (int i = 0; i < size(); i++) {
pf.println(vArray[i][0] + " : " + vArray[i][1]);
}
pf.println(" p(x) ");
for (int i = 0; i < xSize; i++) {
pf.println(i + " : " + ptildeX(i));
}
pf.println(" p(y) ");
for (int i = 0; i < ySize; i++) {
pf.println(i + " : " + ptildeY(i));
}
}
示例5: save_problem
import edu.stanford.nlp.io.PrintFile; //導入依賴的package包/類
/**
* This method writes the problem data into a file, which is good for reading
* with MatLab. It could also have other applications,
* like reducing the memory requirements
*/
void save_problem(String filename) {
try {
PrintFile pf = new PrintFile(filename);
int N = p.data.xSize;
int M = p.data.ySize;
int F = p.fSize;
// byte[] nl = "\n".getBytes();
// byte[] dotsp = ". ".getBytes();
// int space = (int) ' ';
// write the sizes of X, Y, and F( number of features );
pf.println(N);
pf.println(M);
pf.println(F);
// save the objective vector like 1.c0, ... ,N*M. cN*M-1
for (int i = 0; i < N * M; i++) {
pf.print(i + 1);
pf.print(". ");
pf.println(p.data.ptildeX(i / M));
}// for i
// save the constraints matrix B
// for each feature , save its row
for (int i = 0; i < p.fSize; i++) {
int[] values = p.functions.get(i).indexedValues;
for (int k = 0; k < values.length; k++) {
pf.print(i + 1);
pf.print(". ");
pf.print(values[k]);
pf.print(" ");
pf.println(1);
}// k
}// i
// save the constraints vector
// for each feature, save its empirical expectation
for (int i = 0; i < p.fSize; i++) {
pf.print(i + 1);
pf.print(". ");
pf.println(ftildeArr[i]);
}// end
pf.close();
} catch (Exception e) {
e.printStackTrace();
}
}
示例6: writeTagsAndErrors
import edu.stanford.nlp.io.PrintFile; //導入依賴的package包/類
/** Write the tagging and note any errors (if pf != null) and accumulate
* global statistics.
*
* @param finalTags Chosen tags for sentence
* @param pf File to write tagged output to (can be null, then no output;
* at present it is non-null iff the debug property is set)
*/
protected void writeTagsAndErrors(String[] finalTags, PrintFile pf, boolean verboseResults) {
StringWriter sw = new StringWriter(200);
for (int i = 0; i < correctTags.length; i++) {
sw.write(toNice(sent.get(i)));
sw.write(tagSeparator);
sw.write(finalTags[i]);
sw.write(' ');
if (pf != null) {
pf.print(toNice(sent.get(i)));
pf.print(tagSeparator);
pf.print(finalTags[i]);
}
if ((correctTags[i]).equals(finalTags[i])) {
numRight++;
} else {
numWrong++;
if (pf != null) pf.print('|' + correctTags[i]);
if (verboseResults) {
EncodingPrintWriter.err.println((maxentTagger.dict.isUnknown(sent.get(i)) ? "Unk" : "") + "Word: " + sent.get(i) + "; correct: " + correctTags[i] + "; guessed: " + finalTags[i], encoding);
}
if (maxentTagger.dict.isUnknown(sent.get(i))) {
numWrongUnknown++;
if (pf != null) pf.print("*");
}// if
}// else
if (pf != null) pf.print(' ');
}// for
if (pf != null) pf.println();
if (verboseResults) {
PrintWriter pw;
try {
pw = new PrintWriter(new OutputStreamWriter(System.out, encoding), true);
} catch (UnsupportedEncodingException uee) {
pw = new PrintWriter(new OutputStreamWriter(System.out), true);
}
pw.println(sw);
}
}
示例7: printUnknown
import edu.stanford.nlp.io.PrintFile; //導入依賴的package包/類
/**
* This method should be called after the sentence has been tagged.
* For every unknown word, this method prints the 3 most probable tags
* to the file pfu.
*
* @param numSent The sentence number
* @param pfu The file to print the probable tags to
*/
void printUnknown(int numSent, PrintFile pfu) {
NumberFormat nf = new DecimalFormat("0.0000");
int numTags = maxentTagger.tags.getSize();
double[][][] probabilities = new double[size][kBestSize][numTags];
calculateProbs(probabilities);
for (int current = 0; current < size; current++) {
if (maxentTagger.dict.isUnknown(sent.get(current))) {
pfu.print(sent.get(current));
pfu.print(':');
pfu.print(numSent);
double[] probs = new double[3];
String[] tag3 = new String[3];
getTop3(probabilities, current, probs, tag3);
for (int i = 0; i < 3; i++) {
if (probs[i] > Double.NEGATIVE_INFINITY) {
pfu.print('\t');
pfu.print(tag3[i]);
pfu.print(' ');
pfu.print(nf.format(Math.exp(probs[i])));
}
}
int rank;
String correctTag = toNice(this.correctTags[current]);
for (rank = 0; rank < 3; rank++) {
if (correctTag.equals(tag3[rank])) {
break;
} //if
}
pfu.print('\t');
switch (rank) {
case 0:
pfu.print("Correct");
break;
case 1:
pfu.print("2nd");
break;
case 2:
pfu.print("3rd");
break;
default:
pfu.print("Not top 3");
}
pfu.println();
}// if
}// for
}
示例8: printTop
import edu.stanford.nlp.io.PrintFile; //導入依賴的package包/類
void printTop(PrintFile pfu) {
NumberFormat nf = new DecimalFormat("0.0000");
int numTags = maxentTagger.tags.getSize();
double[][][] probabilities = new double[size][kBestSize][numTags];
calculateProbs(probabilities);
for (int current = 0; current < size; current++) {
pfu.print(sent.get(current));
double[] probs = new double[3];
String[] tag3 = new String[3];
getTop3(probabilities, current, probs, tag3);
for (int i = 0; i < 3; i++) {
if (probs[i] > Double.NEGATIVE_INFINITY) {
pfu.print('\t');
pfu.print(tag3[i]);
pfu.print(' ');
pfu.print(nf.format(Math.exp(probs[i])));
}
}
int rank;
String correctTag = toNice(this.correctTags[current]);
for (rank = 0; rank < 3; rank++) {
if (correctTag.equals(tag3[rank])) {
break;
} //if
}
pfu.print('\t');
switch (rank) {
case 0:
pfu.print("Correct");
break;
case 1:
pfu.print("2nd");
break;
case 2:
pfu.print("3rd");
break;
default:
pfu.print("Not top 3");
}
pfu.println();
} // for
}