本文整理匯總了Java中edu.cmu.minorthird.classify.ClassLabel類的典型用法代碼示例。如果您正苦於以下問題:Java ClassLabel類的具體用法?Java ClassLabel怎麽用?Java ClassLabel使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
ClassLabel類屬於edu.cmu.minorthird.classify包,在下文中一共展示了ClassLabel類的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: createExample
import edu.cmu.minorthird.classify.ClassLabel; //導入依賴的package包/類
/**
* Creates an edu.cmu.minorthird.classify.Example object from one line
* of a dataset file using {@link #createInstance(String, String)}.
*
* @param datasetLine the line from the dataset file from which to create
* the Example
* @return the Example created
* @throws Exception
*/
public Example[] createExample(String datasetLine) throws Exception {
Matcher m=datasetExamplePattern.matcher(datasetLine);
if (!m.matches())
throw new Exception("Malformed dataset line:\n"+datasetLine);
String[] aTypes = null;
aTypes = m.group(labelPosition)
.replaceAll(",$", "")
.replaceAll(",", ".")
.split("\\|");
String question = m.group(questionPosition);
String sentParse = null;
if (parsePosition > -1) sentParse = m.group(parsePosition);
Instance instance = createInstance(question,sentParse);
Example[] result = new Example[aTypes.length];
//create example(s) and add it to list
for(int i=0;i<aTypes.length;i++){
String newATypeName=HierarchicalClassifier.getHierarchicalClassName(aTypes[i],classLevels,useClassLevels);
result[i] = new Example(instance,new ClassLabel(newATypeName));
}
return result;
}
示例2: classification
import edu.cmu.minorthird.classify.ClassLabel; //導入依賴的package包/類
public ClassLabel classification(Instance instance){
String labelName="";
double weight=1;
for(int i=0;i<classLevels;i++){
Classifier currentClassifier=(Classifier)classifiers.get(labelName);
ClassLabel currentLabel=currentClassifier.classification(instance);
labelName=getNewLabelName(labelName,currentLabel.bestClassName(),i);
weight*=currentLabel.bestWeight();
}
return new ClassLabel(labelName,weight);
}
示例3: explain
import edu.cmu.minorthird.classify.ClassLabel; //導入依賴的package包/類
public String explain(Instance instance){
String labelName="";
String explanation="";
for(int i=0;i<classLevels;i++){
Classifier currentClassifier=(Classifier)classifiers.get(labelName);
ClassLabel currentLabel=currentClassifier.classification(instance);
labelName=getNewLabelName(labelName,currentLabel.bestClassName(),i);
explanation+=currentClassifier.explain(instance);
}
return explanation;
}
示例4: addExample
import edu.cmu.minorthird.classify.ClassLabel; //導入依賴的package包/類
public void addExample(Example example){
for(int i=0;i<prototypes.length;i++){
String labelName=example.getLabel().bestClassName();
String prefix=getLabelPrefix(labelName,i);
String sublabel=getSublabel(labelName,i);
Example subExample=new Example(example.asInstance(),new ClassLabel(sublabel));
ClassifierLearner subLearner=classifierLearners.get(prefix);
subLearner.addExample(subExample);
}
}
示例5: classify
import edu.cmu.minorthird.classify.ClassLabel; //導入依賴的package包/類
public List<AnswerType> classify(Instance instance) {
List<AnswerType> res = new ArrayList<AnswerType>();
ClassLabel label = null;
synchronized (classifier) {
label = classifier.classification(instance);
}
String labelStr = label.bestClassName().replaceAll("-",".");
AnswerType atype = AnswerType.constructFromString(labelStr);
double weight = label.bestWeight();
if (weight > 1.0) weight = (1 - (1 / weight));
atype.setConfidence(weight);
res.add(atype);
return res;
}
示例6: createExample
import edu.cmu.minorthird.classify.ClassLabel; //導入依賴的package包/類
/**
* Creates a training/evaluation example from a judged answer candidate.
*
* @param features selected features
* @param result judged answer candidate
* @param results all answers to the question
* @param qid question ID
* @return training/evaluation example
*/
private static Example createExample(String[] features, Result result,
Result[] results, String qid) {
// create instance with selected features
Instance instance = createInstance(features, result, results, qid);
// create example from the instance and its class label
String label = result.isCorrect()
? ExampleSchema.POS_CLASS_NAME
: ExampleSchema.NEG_CLASS_NAME;
Example example = new Example(instance, new ClassLabel(label));
return example;
}
示例7: apply
import edu.cmu.minorthird.classify.ClassLabel; //導入依賴的package包/類
/**
* Normalizes the scores of the factoid answers, using the features
* specified in <code>SELECTED_FEATURES</code> and the classifier specified
* in <code>classifier</code>.
*
* @param results array of <code>Result</code> objects
* @return array of <code>Result</code> objects with normalized scores
*/
public Result[] apply(Result[] results) {
if (classifier == null) return results; // classifier not loaded
for (Result result : results) {
// only factoid answers with 1 extraction technique
if (result.getScore() <= 0 ||
result.getScore() == Float.POSITIVE_INFINITY ||
result.getExtractionTechniques() == null ||
result.getExtractionTechniques().length != 1)
continue;
// create instance with selected features
Instance instance = createInstance(SELECTED_FEATURES, result,
results);
// classify instance
ClassLabel label = classifier.classification(instance);
// get weight of positive class as result score
double weight = label.posProbability();
result.setNormScore((float) weight);
}
// preserve original order of results
// results = preserveOrderResorting(results);
// results = preserveOrderAveraging(results);
results = preserveOrderTop(results);
// for (Result result : results) result.setScore(result.getNormScore());
return results;
}
示例8: parse
import edu.cmu.minorthird.classify.ClassLabel; //導入依賴的package包/類
/**
* extract the entities, and put them into the tweet. return them also.
*/
public List<LocEntityAnnotation> parse(Tweet tweet) {
tweetSentence = tweet.getSentence();
EuroLangTwokenizer.tokenize(tweetSentence);
examples = new Example[tweet.getSentence().tokenLength()];
List<Feature[]> feature_instances;
if (fg instanceof FineFeatureGenerator )
{
feature_instances = ((FineFeatureGenerator)fg).extractFeature(tweetSentence);
examples = new Example[feature_instances.size()];
}
else{
feature_instances = fg.extractFeature(tweetSentence);
}
if (feature_instances ==null || feature_instances.size()==0)
return null;
for (int i = 0; i < examples.length; i++) {
ClassLabel label = new ClassLabel("NA");
MutableInstance instance = new MutableInstance("0", Integer.toString(i));
Feature[] features = feature_instances.get(i);
for (int j = 0; j < features.length; j++) {
instance.addBinary(features[j]);
}
examples[i] = new Example(instance, label);
// System.out.println(examples[i].toString());
}
ClassLabel[] resultlabels = model.classification(examples);
/*
* for (int i = 0; i < resultlabels.length; i++) {
* System.out.print(resultlabels[i].bestClassName() + " "); }
*/
List<LocEntityAnnotation> locs = new ArrayList<LocEntityAnnotation>();
/**
* rewrite the loc-entity generation, to support positions.
*/
int startpos = -1, endpos = -1;
String current = "O", previous = "O";
for (int k = 0; k < resultlabels.length; k++) {
if (k > 0)
previous = current;
current = resultlabels[k].bestClassName();
if (current.equals("O"))
if (previous.equals("O"))
continue;
else {
endpos = k - 1;
// System.out.println(startpos + " " + endpos + " " + previous);
Token[] t = new Token[endpos - startpos + 1];
for (int i = startpos; i <= endpos; i++) {
t[i - startpos] = tweet.getSentence().getTokens()[i].setNE(previous);
}
LocEntityAnnotation le = new LocEntityAnnotation(startpos, endpos, previous, t);
// set the probability of the NE type
// This may be changed later.
le.setNETypeProb(0.95);
locs.add(le);
}
else if (previous.equals("O"))
startpos = k;
else
endpos = k;
}
return locs;
}
示例9: classification
import edu.cmu.minorthird.classify.ClassLabel; //導入依賴的package包/類
public ClassLabel classification(Instance instance){
return new ClassLabel(soleLabelName);
}