當前位置: 首頁>>代碼示例>>Java>>正文


Java StateSetTreeList類代碼示例

本文整理匯總了Java中edu.berkeley.nlp.PCFGLA.StateSetTreeList的典型用法代碼示例。如果您正苦於以下問題:Java StateSetTreeList類的具體用法?Java StateSetTreeList怎麽用?Java StateSetTreeList使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


StateSetTreeList類屬於edu.berkeley.nlp.PCFGLA包,在下文中一共展示了StateSetTreeList類的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: labelTrees

import edu.berkeley.nlp.PCFGLA.StateSetTreeList; //導入依賴的package包/類
private void labelTrees(Grammar grammar, List<Tree<String>> trainTrees,
		List<List<String>> goldPOStags) {
	List<Tree<String>> trainTreesNoGF = stripOffGF(trainTrees);
	StateSetTreeList stateSetTrees = new StateSetTreeList(trainTreesNoGF,
			grammar.numSubStates, false, tagNumberer);

	int index = 0;
	for (Tree<StateSet> stateSetTree : stateSetTrees) {
		List<String> goldPOS = goldPOStags.get(index++);

		Tree<String> labeledTree = guessGF(stateSetTree, grammar, goldPOS);

		Tree<String> debinarizedTree = Trees.spliceNodes(labeledTree,
				new Filter<String>() {
					public boolean accept(String s) {
						return s.startsWith("@");
					}
				});

		System.out.println(debinarizedTree + "\n");
	}

}
 
開發者ID:text-machine-lab,項目名稱:CliRel,代碼行數:24,代碼來源:GermanSharedTask.java

示例2: Calculator

import edu.berkeley.nlp.PCFGLA.StateSetTreeList; //導入依賴的package包/類
Calculator(StateSetTreeList myT, String consN, int i, Grammar gr,
		Lexicon lex, SpanPredictor sp, int dimension, boolean notProject) {
	// this.nGrWeights = nGrWeights;
	this.nCounts = dimension;
	this.consName = consN;
	this.myTrees = myT;
	this.doNotProjectConstraints = notProject;
	this.myID = i;
	gParser = new ArrayParser(gr, lex);
	eParser = newEParser(gr, lex, sp);
}
 
開發者ID:text-machine-lab,項目名稱:CliRel,代碼行數:12,代碼來源:ParsingObjectiveFunction.java

示例3: Merger

import edu.berkeley.nlp.PCFGLA.StateSetTreeList; //導入依賴的package包/類
Merger(StateSetTreeList myT, String consN, int i, Grammar gr,
		Lexicon lex, double[][] mergeWeights) {
	this.consName = consN;
	this.myTrees = myT;
	this.myID = i;
	this.mergeWeights = mergeWeights;
	gParser = new ArrayParser(gr, lex);
	eParser = new ConstrainedTwoChartsParser(gr, lex, null);
}
 
開發者ID:text-machine-lab,項目名稱:CliRel,代碼行數:10,代碼來源:ConditionalMerger.java

示例4: extractGrammar

import edu.berkeley.nlp.PCFGLA.StateSetTreeList; //導入依賴的package包/類
public Grammar extractGrammar(List<Tree<String>> trainTrees) {
	tagNumberer = Numberer.getGlobalNumberer("tags");
	substateNumberers = new ArrayList<Numberer>();

	short[] numSubStates = countSymbols(trainTrees);

	List<Tree<String>> trainTreesNoGF = stripOffGF(trainTrees);
	StateSetTreeList stateSetTrees = new StateSetTreeList(trainTreesNoGF,
			numSubStates, false, tagNumberer);

	Grammar grammar = createGrammar(stateSetTrees, trainTrees, numSubStates);

	return grammar;
}
 
開發者ID:text-machine-lab,項目名稱:CliRel,代碼行數:15,代碼來源:GermanSharedTask.java

示例5: createGrammar

import edu.berkeley.nlp.PCFGLA.StateSetTreeList; //導入依賴的package包/類
private Grammar createGrammar(StateSetTreeList stateSetTrees,
		List<Tree<String>> trainTrees, short[] numSubStates) {
	Grammar grammar = new Grammar(numSubStates, false, new NoSmoothing(),
			null, -1);
	int index = 0;
	for (Tree<StateSet> stateSetTree : stateSetTrees) {
		Tree<String> tree = trainTrees.get(index++);
		setScores(stateSetTree, tree);
		grammar.tallyStateSetTree(stateSetTree, grammar);
	}
	grammar.optimize(0); // M Step
	return grammar;
}
 
開發者ID:text-machine-lab,項目名稱:CliRel,代碼行數:14,代碼來源:GermanSharedTask.java

示例6: ParsingObjectiveFunction

import edu.berkeley.nlp.PCFGLA.StateSetTreeList; //導入依賴的package包/類
public ParsingObjectiveFunction(Linearizer linearizer,
		StateSetTreeList trainTrees, double sigma, int regularization,
		String consName, int nProc, String outName,
		boolean doNotProjectConstraints, boolean combinedLexicon) {
	this.sigma = sigma;
	this.myRegularization = regularization;
	this.grammar = linearizer.getGrammar();// .copyGrammar();
	this.lexicon = linearizer.getLexicon();// .copyLexicon();
	this.spanPredictor = linearizer.getSpanPredictor();
	this.linearizer = linearizer;
	this.outFileName = outName;
	this.dimension = linearizer.dimension();

	nGrammarWeights = linearizer.getNGrammarWeights();
	nLexiconWeights = linearizer.getNLexiconWeights();
	nSpanWeights = linearizer.getNSpanWeights();

	if (spanPredictor != null)
		this.spanGoldCounts = spanPredictor
				.countGoldSpanFeatures(trainTrees);

	int nTreesPerBlock = trainTrees.size() / nProc;
	this.consBaseName = consName;
	boolean[][][][][] tmp = edu.berkeley.nlp.PCFGLA.ParserConstrainer
			.loadData(consName + "-0.data");
	if (tmp != null)
		nTreesPerBlock = tmp.length;

	// split the trees into chunks
	this.nProcesses = nProc;
	trainingTrees = new StateSetTreeList[nProcesses];
	// allowedStates = new ArrayList[nProcesses];
	for (int i = 0; i < nProcesses; i++) {
		trainingTrees[i] = new StateSetTreeList();
		// allowedStates[i] = new ArrayList<boolean[][][][]>();
	}
	int block = -1;
	int inBlock = 0;
	for (int i = 0; i < trainTrees.size(); i++) {
		if (i % nTreesPerBlock == 0) {
			block++;
			// System.out.println(inBlock);
			inBlock = 0;
		}
		trainingTrees[block % nProcesses].add(trainTrees.get(i));
		inBlock++;
		// if (cons!=null)
		// allowedStates[i%nProcesses].add(ArrayUtil.clone(cons[i]));
	}
	for (int i = 0; i < nProcesses; i++) {
		System.out.println("Process " + i + " has "
				+ trainingTrees[i].size() + " trees.");
	}
	trainTrees = null;
	pool = Executors.newFixedThreadPool(nProcesses);// CachedThreadPool();

	tasks = new Calculator[nProcesses];
	for (int i = 0; i < nProcesses; i++) {
		tasks[i] = newCalculator(doNotProjectConstraints, i);
	}

	this.bestObjectiveSoFar = Double.POSITIVE_INFINITY;
}
 
開發者ID:text-machine-lab,項目名稱:CliRel,代碼行數:64,代碼來源:ParsingObjectiveFunction.java

示例7: ConditionalMerger

import edu.berkeley.nlp.PCFGLA.StateSetTreeList; //導入依賴的package包/類
/**
 * @param processes
 * @param consBaseName
 * @param trainingTrees
 */
public ConditionalMerger(int processes, String consBaseName,
		StateSetTreeList trainTrees, Grammar gr, Lexicon lex,
		double mergingPercentage, String outFileName) {
	this.nProcesses = processes;
	this.consBaseName = consBaseName;
	this.grammar = gr;// .copyGrammar();
	this.lexicon = lex;// .copyLexicon();
	this.mergingPercentage = mergingPercentage;
	this.outFileName = outFileName;

	int nTreesPerBlock = trainTrees.size() / processes;
	this.consBaseName = consBaseName;
	boolean[][][][][] tmp = edu.berkeley.nlp.PCFGLA.ParserConstrainer
			.loadData(consBaseName + "-0.data");
	if (tmp != null)
		nTreesPerBlock = tmp.length;

	// first compute the generative merging criterion
	mergeWeights = GrammarMerger.computeMergeWeights(grammar, lexicon,
			trainTrees);
	double[][][] deltas = GrammarMerger.computeDeltas(grammar, lexicon,
			mergeWeights, trainTrees);
	boolean[][][] mergeThesePairs = GrammarMerger.determineMergePairs(
			deltas, false, mergingPercentage, grammar);
	Grammar tmpGrammar = grammar.copyGrammar(true);
	Lexicon tmpLexicon = lexicon.copyLexicon();
	tmpGrammar = GrammarMerger.doTheMerges(tmpGrammar, tmpLexicon,
			mergeThesePairs, mergeWeights);
	System.out.println("Generative merging criterion gives:");
	GrammarMerger.printMergingStatistics(grammar, tmpGrammar);
	mergeWeights = GrammarMerger.computeMergeWeights(grammar, lexicon,
			trainTrees);

	// split the trees into chunks
	trainingTrees = new StateSetTreeList[nProcesses];
	for (int i = 0; i < nProcesses; i++) {
		trainingTrees[i] = new StateSetTreeList();
	}
	int block = -1;
	int inBlock = 0;
	for (int i = 0; i < trainTrees.size(); i++) {
		if (i % nTreesPerBlock == 0) {
			block++;
			System.out.println(inBlock);
			inBlock = 0;
		}
		trainingTrees[block % nProcesses].add(trainTrees.get(i));
		inBlock++;
	}
	trainTrees = null;
	pool = Executors.newFixedThreadPool(nProcesses);// CachedThreadPool();

	tasks = new Merger[nProcesses];
	for (int i = 0; i < nProcesses; i++) {
		tasks[i] = new Merger(trainingTrees[i], consBaseName, i, grammar,
				lexicon, mergeWeights);
	}

}
 
開發者ID:text-machine-lab,項目名稱:CliRel,代碼行數:65,代碼來源:ConditionalMerger.java

示例8: createGrammar

import edu.berkeley.nlp.PCFGLA.StateSetTreeList; //導入依賴的package包/類
private static ParserData createGrammar(List<Tree<String>> trainTrees,
		boolean smooth) {
	tagNumberer = Numberer.getGlobalNumberer("tags");
	substateNumberers = new ArrayList<Numberer>();

	short[] numSubStates = countSymbols(trainTrees);

	List<Tree<String>> trainTreesNoAnnotation = stripOffAnnotation(trainTrees);
	StateSetTreeList stateSetTrees = new StateSetTreeList(
			trainTreesNoAnnotation, numSubStates, false, tagNumberer);

	Grammar grammar = new Grammar(numSubStates, false, new NoSmoothing(),
			null, -1);
	Lexicon lexicon = new SophisticatedLexicon(numSubStates,
			SophisticatedLexicon.DEFAULT_SMOOTHING_CUTOFF, new double[] {
					0.5, 0.1 }, new NoSmoothing(), 0);

	if (smooth) {
		System.out.println("Will smooth the grammar.");
		Smoother grSmoother = new SmoothAcrossParentSubstate(0.01);
		Smoother lexSmoother = new SmoothAcrossParentSubstate(0.1);
		grammar.setSmoother(grSmoother);
		lexicon.setSmoother(lexSmoother);
	}

	System.out.print("Creating grammar...");
	int index = 0;
	boolean secondHalf = false;
	int nTrees = trainTrees.size();
	for (Tree<StateSet> stateSetTree : stateSetTrees) {
		Tree<String> tree = trainTrees.get(index++);
		secondHalf = (index > nTrees / 2.0);
		setScores(stateSetTree, tree);
		lexicon.trainTree(stateSetTree, 0, null, secondHalf, false, 4);
		grammar.tallyStateSetTree(stateSetTree, grammar);
	}
	lexicon.optimize();
	grammar.optimize(0);
	System.out.println("done.");

	ParserData pData = new ParserData(lexicon, grammar, null,
			Numberer.getNumberers(), numSubStates, 1, 0, Binarization.RIGHT);

	return pData;

}
 
開發者ID:text-machine-lab,項目名稱:CliRel,代碼行數:47,代碼來源:ObservedGrammarExtractor.java


注:本文中的edu.berkeley.nlp.PCFGLA.StateSetTreeList類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。