當前位置: 首頁>>代碼示例>>Java>>正文


Java Attribute類代碼示例

本文整理匯總了Java中dr.util.Attribute的典型用法代碼示例。如果您正苦於以下問題:Java Attribute類的具體用法?Java Attribute怎麽用?Java Attribute使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


Attribute類屬於dr.util包,在下文中一共展示了Attribute類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: writeGeneralDataType

import dr.util.Attribute; //導入依賴的package包/類
private void writeGeneralDataType(PartitionSubstitutionModel model, XMLWriter writer) {

        writer.writeComment("general data type for discrete trait model, '" + model.getName() + "'");

        Set<String> states = options.getStatesForDiscreteModel(model);
        String prefix = model.getName() + ".";

        // <generalDataType>
        writer.writeOpenTag(GeneralDataTypeParser.GENERAL_DATA_TYPE, new Attribute[]{
                new Attribute.Default<String>(XMLParser.ID, prefix + "dataType")});

        int numOfStates = states.size();
        writer.writeComment("Number Of States = " + numOfStates);

        for (String eachGD : states) {
            writer.writeTag(GeneralDataTypeParser.STATE, new Attribute[]{
                    new Attribute.Default<String>(GeneralDataTypeParser.CODE, eachGD)}, true);
        }

        writer.writeCloseTag(GeneralDataTypeParser.GENERAL_DATA_TYPE);
    }
 
開發者ID:beast-dev,項目名稱:beast-mcmc,代碼行數:22,代碼來源:DiscreteTraitsComponentGenerator.java

示例2: main

import dr.util.Attribute; //導入依賴的package包/類
public static void main(String[] arg) throws IOException, TraceException {

        // constructing random variable representing mean of normal distribution
        Variable.D mean = new Variable.D("mean", 1.0);
        // give mean a uniform prior [-1000, 1000]
        mean.addBounds(new Parameter.DefaultBounds(1000, -1000, 1));

        // constructing random variable representing stdev of normal distribution
        Variable.D stdev = new Variable.D("stdev", 1.0);
        // give stdev a uniform prior [0, 1000]
        stdev.addBounds(new Parameter.DefaultBounds(1000, 0, 1));

        // construct normal distribution model
        NormalDistributionModel normal = new NormalDistributionModel(mean, stdev);

        // construct a likelihood for normal distribution
        DistributionLikelihood likelihood = new DistributionLikelihood(normal);

        // construct data
        Attribute.Default<double[]> d = new Attribute.Default<double[]>(
                "x", new double[]{1, 2, 3, 4, 5, 6, 7, 8, 9});

        // add data (representing 9 independent observations) to likelihood
        likelihood.addData(d);

        // construct two "operators" to be used as the proposal distribution
        MCMCOperator meanMove = new ScaleOperator(mean, 0.75);
        MCMCOperator stdevMove = new ScaleOperator(stdev, 0.75);

        // construct a logger to log progress of MCMC run to stdout (screen)
        MCLogger logger1 = new MCLogger(100);
        logger1.add(mean);
        logger1.add(stdev);

        // construct a logger to log to a log file for later analysis
        MCLogger logger2 = new MCLogger("tutorial1.log", 100, false, 0);
        logger2.add(mean);
        logger2.add(stdev);

        // construct MCMC object
        MCMC mcmc = new MCMC("tutorial1:normal");

        // initialize MCMC with chain length, likelihood, operators and loggers
        mcmc.init(100000, likelihood, new MCMCOperator[]{meanMove, stdevMove}, new Logger[]{logger1, logger2});

        // run the mcmc
        mcmc.chain();

        // perform post-analysis
        TraceAnalysis.report("tutorial1.log");
    }
 
開發者ID:beast-dev,項目名稱:beast-mcmc,代碼行數:52,代碼來源:Tutorial1.java

示例3: main

import dr.util.Attribute; //導入依賴的package包/類
public static void main(String[] arg) {

        // Define normal model
        Parameter meanParameter = new Parameter.Default(1.0); // Starting value
        Variable<Double> stdev = new Variable.D(1.0, 1); // Fixed value
        ParametricDistributionModel densityModel = new NormalDistributionModel(meanParameter, stdev);
        DistributionLikelihood likelihood = new DistributionLikelihood(densityModel);

        // Define prior
        DistributionLikelihood prior = new DistributionLikelihood(new NormalDistribution(0.0, 1.0)); // Hyper-priors
        prior.addData(meanParameter);

        // Define data
        likelihood.addData(new Attribute.Default<double[]>("Data", new double[] {0.0, 1.0, 2.0}));

        List<Likelihood> list = new ArrayList<Likelihood>();
        list.add(likelihood);
        list.add(prior);
        CompoundLikelihood posterior = new CompoundLikelihood(0, list);
        SliceOperator sliceSampler = new SliceOperator(meanParameter);

        final int length = 10000;
        double mean = 0;
        double variance = 0;

        for(int i = 0; i < length; i++) {
            sliceSampler.doOperation(posterior);
            double x = meanParameter.getValue(0);
            mean += x;
            variance += x*x;
        }
        mean /= length;
        variance /= length;
        variance -= mean*mean;
        System.out.println("E(x) = "+mean);
        System.out.println("V(x) = "+variance);
    }
 
開發者ID:beast-dev,項目名稱:beast-mcmc,代碼行數:38,代碼來源:SliceOperator.java

示例4: parseXMLObject

import dr.util.Attribute; //導入依賴的package包/類
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
	
	String[] names = ((XMLObject)xo.getChild(NAMES)).getStringArrayChild(0);
	String[] values =((XMLObject)xo.getChild(VALUES)).getStringArrayChild(0);
	
	if (names.length != values.length) {
		throw new XMLParseException("The number of names and values must match.");
	}
	
	Attribute[] attributes = new Attribute[names.length];
	for (int i =0; i < attributes.length; i++) {
		attributes[i] = new Attribute.Default(names[i], values[i]);
	}
	
	return attributes;
}
 
開發者ID:beast-dev,項目名稱:beast-mcmc,代碼行數:17,代碼來源:AttributesParser.java

示例5: writeParameter

import dr.util.Attribute; //導入依賴的package包/類
/**
 * write a parameter
 *
 * @param parameterId     the parameter name/id
 * @param parameterColumn the parameter column from which the samples are taken
 * @param fileName        the file from which the samples are taken
 * @param burnin          the number of samples to be discarded
 * @param writer          the writer
 */
public void writeParameter(String parameterId, String parameterColumn, String fileName, int burnin, XMLWriter writer) {
    ArrayList<Attribute.Default> attributes = new ArrayList<Attribute.Default>();
    attributes.add(new Attribute.Default<String>(XMLParser.ID, parameterId));

    attributes.add(new Attribute.Default<String>("parameterColumn", parameterColumn));
    attributes.add(new Attribute.Default<String>("fileName", fileName));
    attributes.add(new Attribute.Default<String>("burnin", "" + burnin));

    Attribute[] attrArray = new Attribute[attributes.size()];
    for (int i = 0; i < attrArray.length; i++) {
        attrArray[i] = attributes.get(i);
    }

    writer.writeTag(ParameterParser.PARAMETER, attrArray, true);
}
 
開發者ID:beast-dev,項目名稱:beast-mcmc,代碼行數:25,代碼來源:Generator.java

示例6: writeDeltaOperator

import dr.util.Attribute; //導入依賴的package包/類
private void writeDeltaOperator(Operator operator, boolean weighted, XMLWriter writer) {

        int[] parameterWeights = operator.getParameter1().getParameterDimensionWeights();
        Attribute[] attributes;

        if (weighted && parameterWeights != null && parameterWeights.length > 1) {
            String pw = "" + parameterWeights[0];
            for (int i = 1; i < parameterWeights.length; i++) {
                pw += " " + parameterWeights[i];
            }
            attributes = new Attribute[]{
                    new Attribute.Default<Double>(DeltaExchangeOperatorParser.DELTA, operator.getTuning()),
                    new Attribute.Default<String>(DeltaExchangeOperatorParser.PARAMETER_WEIGHTS, pw),
                    getWeightAttribute(operator.getWeight())
            };
        } else {
            attributes = new Attribute[]{
                    new Attribute.Default<Double>(DeltaExchangeOperatorParser.DELTA, operator.getTuning()),
                    getWeightAttribute(operator.getWeight())
            };
        }

        writer.writeOpenTag(DeltaExchangeOperatorParser.DELTA_EXCHANGE, attributes);
        writeParameter1Ref(writer, operator);
        writer.writeCloseTag(DeltaExchangeOperatorParser.DELTA_EXCHANGE);
    }
 
開發者ID:beast-dev,項目名稱:beast-mcmc,代碼行數:27,代碼來源:OperatorsGenerator.java

示例7: getMeanPriorAttributes

import dr.util.Attribute; //導入依賴的package包/類
private Attribute[] getMeanPriorAttributes(HierarchicalPhylogeneticModel hpm) {
    return new Attribute[] {
            new Attribute.Default<String>(XMLParser.ID, getMeanPriorName(hpm)),
            new Attribute.Default<Double>(PriorParsers.MEAN, hpm.getConditionalParameterList().get(0).mean),
            new Attribute.Default<Double>(PriorParsers.STDEV, hpm.getConditionalParameterList().get(0).stdev),
    };
}
 
開發者ID:beast-dev,項目名稱:beast-mcmc,代碼行數:8,代碼來源:HierarchicalModelComponentGenerator.java

示例8: getPrecisionPriorAttributes

import dr.util.Attribute; //導入依賴的package包/類
private Attribute[] getPrecisionPriorAttributes(HierarchicalPhylogeneticModel hpm) {
    return new Attribute[] {
            new Attribute.Default<String>(XMLParser.ID, getPrecisionPriorName(hpm)),
            new Attribute.Default<Double>(PriorParsers.SHAPE, hpm.getConditionalParameterList().get(1).shape),
            new Attribute.Default<Double>(PriorParsers.SCALE, hpm.getConditionalParameterList().get(1).scale),
            new Attribute.Default<Double>(PriorParsers.OFFSET, 0.0),
    };
}
 
開發者ID:beast-dev,項目名稱:beast-mcmc,代碼行數:9,代碼來源:HierarchicalModelComponentGenerator.java

示例9: writeTaxaRef

import dr.util.Attribute; //導入依賴的package包/類
private void writeTaxaRef(String taxaId, PartitionTreeModel model, XMLWriter writer) {

        Attribute[] taxaAttribute = {new Attribute.Default<String>(XMLParser.IDREF, taxaId)};

        if (options.taxonSets != null && options.taxonSets.size() > 0 && !options.useStarBEAST) { // need !options.useStarBEAST,
            // *BEAST case is in STARBEASTGenerator.writeStartingTreeForCalibration(XMLWriter writer)
            writer.writeOpenTag(OldCoalescentSimulatorParser.CONSTRAINED_TAXA);
            writer.writeTag(TaxaParser.TAXA, taxaAttribute, true);
            for (Taxa taxa : options.taxonSets) {
                if (options.taxonSetsTreeModel.get(taxa).equals(model)) {
                    Parameter statistic = options.getStatistic(taxa);

                    Attribute mono = new Attribute.Default<Boolean>(
                            OldCoalescentSimulatorParser.IS_MONOPHYLETIC, options.taxonSetsMono.get(taxa));

                    writer.writeOpenTag(OldCoalescentSimulatorParser.TMRCA_CONSTRAINT, mono);

                    writer.writeIDref(TaxaParser.TAXA, taxa.getId());

                    if (model.getPartitionTreePrior().getNodeHeightPrior() == TreePriorType.YULE_CALIBRATION
                            && statistic.priorType == PriorType.UNIFORM_PRIOR) {
                        writeDistribution(statistic, false, writer);
                    }

                    writer.writeCloseTag(OldCoalescentSimulatorParser.TMRCA_CONSTRAINT);
                }
            }
            writer.writeCloseTag(OldCoalescentSimulatorParser.CONSTRAINED_TAXA);
        } else {
            writer.writeTag(TaxaParser.TAXA, taxaAttribute, true);
        }
    }
 
開發者ID:beast-dev,項目名稱:beast-mcmc,代碼行數:33,代碼來源:InitialTreeGenerator.java

示例10: writeGLMCoefficientOperator

import dr.util.Attribute; //導入依賴的package包/類
private void writeGLMCoefficientOperator(PartitionSubstitutionModel model, XMLWriter writer) {
    writer.writeOpenTag(MultivariateNormalOperator.MVN_OPERATOR,
            new Attribute[]{
                    new Attribute.Default<Double>(MultivariateNormalOperator.SCALE_FACTOR, 1.0),
                    new Attribute.Default<Double>(MultivariateNormalOperator.WEIGHT,5.0),
                    new Attribute.Default<String>(MultivariateNormalOperator.FORM_XTX, "true")
            }
    );
    String prefix = model.getName() + ".";

    writeParameterRef(prefix + "coefficients", writer);

    writer.writeOpenTag(MultivariateNormalOperator.VARIANCE_MATRIX);
    writeParameterRef(prefix + DesignMatrix.DESIGN_MATRIX, writer);
    writer.writeCloseTag(MultivariateNormalOperator.VARIANCE_MATRIX);

    writer.writeCloseTag(MultivariateNormalOperator.MVN_OPERATOR);
}
 
開發者ID:beast-dev,項目名稱:beast-mcmc,代碼行數:19,代碼來源:DiscreteTraitsComponentGenerator.java

示例11: prettyName

import dr.util.Attribute; //導入依賴的package包/類
@Override
public String prettyName() {
    String s = distribution.getClass().getName();
    String[] parts = s.split("\\.");
    s = parts[parts.length - 1];
    if( s.endsWith("Distribution") ) {
        s = s.substring(0, s.length() - "Distribution".length());
    }
    s = s + '(';
    for( Attribute<double[]> data : dataList ) {
        String name = data.getAttributeName();
        if( name == null ) {
            name = "?";
        }
            s = s + name + ',';
    }
    s = s.substring(0,s.length()-1) + ')';

    return s;
}
 
開發者ID:beast-dev,項目名稱:beast-mcmc,代碼行數:21,代碼來源:DistributionLikelihood.java

示例12: doOperation

import dr.util.Attribute; //導入依賴的package包/類
/**
 * Called by operate(), does the actual operation.
 *
 * @return the hastings ratio
 * @throws OperatorFailedException if operator fails and should be rejected
 */
public double doOperation() {

    double priorPrecision = 1.0 / prior.variance();
    double priorMean = prior.mean();
    double likelihoodPrecision = 1.0 / likelihood.variance();

    double total = 0;
    int n = 0;
    for ( Attribute<double[]> statistic : dataList ) {
        for (double x : statistic.getAttributeValue()) {
            if (isLog)
                total += Math.log(x);
            else
                total += x;
            n++;
        }
    }

    double precision = priorPrecision + likelihoodPrecision * n;
    double mu = (priorPrecision * priorMean + likelihoodPrecision * total) / precision;
    meanParameter.setParameterValue(0,
            MathUtils.nextGaussian() / Math.sqrt(precision) + mu);  // N(\mu, \precision)
    return 0;
}
 
開發者ID:beast-dev,項目名稱:beast-mcmc,代碼行數:31,代碼來源:NormalNormalMeanGibbsOperator.java

示例13: writeTaxonTraits

import dr.util.Attribute; //導入依賴的package包/類
private void writeTaxonTraits(Taxon taxon, XMLWriter writer) {
    for (AbstractPartitionData partition : options.getDataPartitions(ContinuousDataType.INSTANCE)) {
        writer.writeOpenTag(AttributeParser.ATTRIBUTE, new Attribute[]{
                new Attribute.Default<String>(Attribute.NAME, partition.getName())});

        StringBuilder sb = new StringBuilder();
        boolean first = true;
        for (TraitData trait : partition.getTraits()) {
            if (!first) {
                sb.append(" ");
            }

            if (taxon.containsAttribute(trait.getName())) {
                sb.append(taxon.getAttribute(trait.getName()).toString());
            } else {
                sb.append("?");
            }
            first = false;
        }
        writer.writeText(sb.toString());
        writer.writeCloseTag(AttributeParser.ATTRIBUTE);
    }
}
 
開發者ID:beast-dev,項目名稱:beast-mcmc,代碼行數:24,代碼來源:ContinuousComponentGenerator.java

示例14: writeGLMBinomialLikelihood

import dr.util.Attribute; //導入依賴的package包/類
private void writeGLMBinomialLikelihood(PartitionSubstitutionModel model, XMLWriter writer) {
    double proportion = 1.0 - Math.exp(Math.log(0.5) / model.getTraitData().getIncludedPredictorCount());

    String prefix = model.getName() + ".";

    writer.writeComment("Using the binomialLikelihood we specify a 50% prior mass on no predictors being included.");
    writer.writeOpenTag(BinomialLikelihood.BINOMIAL_LIKELIHOOD);
    writer.writeOpenTag(BinomialLikelihoodParser.PROPORTION);
    writer.writeTag("parameter", new Attribute.Default<Double>("value", proportion), true);
    writer.writeCloseTag(BinomialLikelihoodParser.PROPORTION);
    // the dimension of this parameter will be set automatically to be the same as the counts.
    writer.writeOpenTag(BinomialLikelihoodParser.TRIALS);
    writer.writeTag("parameter", new Attribute[]{
            new Attribute.Default<Double>("value", 1.0)
    }, true);
    writer.writeCloseTag(BinomialLikelihoodParser.TRIALS);
    writer.writeOpenTag(BinomialLikelihoodParser.COUNTS);
    writeParameterRef(prefix + "coefIndicators", writer);
    writer.writeCloseTag(BinomialLikelihoodParser.COUNTS);

    writer.writeCloseTag(BinomialLikelihood.BINOMIAL_LIKELIHOOD);
}
 
開發者ID:beast-dev,項目名稱:beast-mcmc,代碼行數:23,代碼來源:DiscreteTraitsComponentGenerator.java

示例15: writeStatisticModel

import dr.util.Attribute; //導入依賴的package包/類
private void writeStatisticModel(PartitionSubstitutionModel model, XMLWriter writer) {
    String prefix = model.getName() + ".";

    writer.writeOpenTag(SumStatisticParser.SUM_STATISTIC, new Attribute[]{
            new Attribute.Default<String>(XMLParser.ID, prefix + "nonZeroRates"),
            new Attribute.Default<Boolean>(SumStatisticParser.ELEMENTWISE, true)});
    writer.writeIDref(ParameterParser.PARAMETER, prefix + "indicators");
    writer.writeCloseTag(SumStatisticParser.SUM_STATISTIC);

    writer.writeOpenTag(ProductStatisticParser.PRODUCT_STATISTIC, new Attribute[]{
            new Attribute.Default<String>(XMLParser.ID, prefix + "actualRates"),
            new Attribute.Default<Boolean>(SumStatisticParser.ELEMENTWISE, false)});
    writer.writeIDref(ParameterParser.PARAMETER, prefix + "indicators");
    writer.writeIDref(ParameterParser.PARAMETER, prefix + "rates");
    writer.writeCloseTag(ProductStatisticParser.PRODUCT_STATISTIC);
}
 
開發者ID:beast-dev,項目名稱:beast-mcmc,代碼行數:17,代碼來源:DiscreteTraitsComponentGenerator.java


注:本文中的dr.util.Attribute類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。