本文整理匯總了Java中dr.inference.model.Likelihood類的典型用法代碼示例。如果您正苦於以下問題:Java Likelihood類的具體用法?Java Likelihood怎麽用?Java Likelihood使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
Likelihood類屬於dr.inference.model包,在下文中一共展示了Likelihood類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: main
import dr.inference.model.Likelihood; //導入依賴的package包/類
public static void main(String[] arg) {
// Define normal model
Parameter meanParameter = new Parameter.Default(1.0); // Starting value
Variable<Double> stdev = new Variable.D(1.0, 1); // Fixed value
ParametricDistributionModel densityModel = new NormalDistributionModel(meanParameter, stdev);
DistributionLikelihood likelihood = new DistributionLikelihood(densityModel);
// Define prior
DistributionLikelihood prior = new DistributionLikelihood(new NormalDistribution(0.0, 1.0)); // Hyper-priors
prior.addData(meanParameter);
// Define data
likelihood.addData(new Attribute.Default<double[]>("Data", new double[] {0.0, 1.0, 2.0}));
List<Likelihood> list = new ArrayList<Likelihood>();
list.add(likelihood);
list.add(prior);
CompoundLikelihood posterior = new CompoundLikelihood(0, list);
SliceOperator sliceSampler = new SliceOperator(meanParameter);
final int length = 10000;
double mean = 0;
double variance = 0;
for(int i = 0; i < length; i++) {
sliceSampler.doOperation(posterior);
double x = meanParameter.getValue(0);
mean += x;
variance += x*x;
}
mean /= length;
variance /= length;
variance -= mean*mean;
System.out.println("E(x) = "+mean);
System.out.println("V(x) = "+variance);
}
示例2: testBirthDeathLikelihoodBEAST2
import dr.inference.model.Likelihood; //導入依賴的package包/類
public void testBirthDeathLikelihoodBEAST2() {
System.out.println("RootHeight = " + tree2.getRootHeight());
Variable<Double> origin = new Variable.D("origin", 6.0);
final double birthRate = 2.0;
final double deathRate = 1.0;
final double psiRate = 0.5; // rate of sampling taxa through time
final double sampleProbability = 0.0; // the proportion of taxa sampled, default to fix to 0
final boolean hasFinalSample = false;
Variable<Double> b = new Variable.D("b", birthRate);
Variable<Double> d = new Variable.D("d", deathRate);
Variable<Double> psi = new Variable.D("psi", psiRate);
Variable<Double> p = new Variable.D("p", sampleProbability);
Variable<Double> r = new Variable.D("r", 0.0); // sampleBecomesNonInfectiousProb
SpeciationModel speciationModel = new BirthDeathSerialSamplingModel(b, d, psi, p, false, r, hasFinalSample, origin, Units.Type.YEARS);
Likelihood likelihood = new SpeciationLikelihood(tree2, speciationModel, "bdss.like");
assertEquals(-19.0198, likelihood.getLogLikelihood(), 1e-5);
}
示例3: CompoundGaussianProcess
import dr.inference.model.Likelihood; //導入依賴的package包/類
public CompoundGaussianProcess(List<GaussianProcessRandomGenerator> gpList, List<Likelihood> likelihoodList,
List<Integer> copyList) {
this.gpList = gpList;
this.copyList = copyList;
this.likelihoodList = likelihoodList;
compoundLikelihood = new CompoundLikelihood(likelihoodList);
if (USE_POOL) {
callers = createTasks();
threadCount = callers.size();
pool = Executors.newFixedThreadPool(threadCount);
} else {
callers = null;
threadCount = -1;
pool = null;
}
}
示例4: MLOptimizer
import dr.inference.model.Likelihood; //導入依賴的package包/類
/**
* Constructor
* @param chainLength the chain length
* @param schedule operator schedule to be used in chain.
*/
public MLOptimizer(String id,
int chainLength,
Likelihood likelihood,
OperatorSchedule schedule,
Logger[] loggers) {
this.id = id;
mc = new MarkovChain(likelihood, schedule, new GreatDelugeCriterion(0.2), 2000, 1, MarkovChain.EVALUATION_TEST_THRESHOLD, false);
//mc = new MarkovChain(null, likelihood, schedule, new HillClimbingCriterion(), false);
this.chainLength = chainLength;
this.likelihood = likelihood;
this.loggers = loggers;
setOperatorSchedule(schedule);
//initialize transients
currentState = 0;
}
示例5: MarkovChain
import dr.inference.model.Likelihood; //導入依賴的package包/類
public MarkovChain(Likelihood likelihood,
OperatorSchedule schedule, Acceptor acceptor,
long fullEvaluationCount, int minOperatorCountForFullEvaluation, double evaluationTestThreshold,
boolean useCoercion) {
currentLength = 0;
this.likelihood = likelihood;
this.schedule = schedule;
this.acceptor = acceptor;
this.useCoercion = useCoercion;
this.fullEvaluationCount = fullEvaluationCount;
this.minOperatorCountForFullEvaluation = minOperatorCountForFullEvaluation;
this.evaluationTestThreshold = evaluationTestThreshold;
Likelihood.CONNECTED_LIKELIHOOD_SET.add(likelihood);
Likelihood.CONNECTED_LIKELIHOOD_SET.addAll(likelihood.getLikelihoodSet());
for (Likelihood l : Likelihood.FULL_LIKELIHOOD_SET) {
if (!Likelihood.CONNECTED_LIKELIHOOD_SET.contains(l)) {
System.err.println("WARNING: Likelihood component, " + l.getId() + ", created but not used in the MCMC");
}
}
currentScore = evaluate(likelihood);
}
示例6: doOperation
import dr.inference.model.Likelihood; //導入依賴的package包/類
public double doOperation(Likelihood likelihood) {
if (!burnin) {
if (sampleCount < samples * sampleEvery) {
sampleCount++;
if (sampleCount % sampleEvery == 0) {
probabilityEstimater.addTree(tree);
}
setAcceptCount(0);
setRejectCount(0);
setTransitions(0);
return doUnguidedOperation();
} else {
return doImportanceDistributionOperation(likelihood);
}
} else {
return doUnguidedOperation();
}
}
示例7: restore
import dr.inference.model.Likelihood; //導入依賴的package包/類
protected void restore(Likelihood likelihood,
Model currentModel, MCMCOperator mcmcOperator, double oldScore) {
currentModel.restoreModelState();
// This is a test that the state is correctly restored. The restored
// state is fully evaluated and the likelihood compared with that before
// the operation was made.
likelihood.makeDirty();
final double testScore = evaluate(likelihood, 1.0);
if (Math.abs(testScore - oldScore) > 1e-6) {
Logger.getLogger("error").severe(
"State was not correctly restored after reject step.\n"
+ "Likelihood before: " + oldScore
+ " Likelihood after: " + testScore + "\n"
+ "Operator: " + mcmcOperator + " "
+ mcmcOperator.getOperatorName());
}
}
示例8: doOperation
import dr.inference.model.Likelihood; //導入依賴的package包/類
@Override
public double doOperation(Likelihood likelihood) {
final double[] initialPosition = leapFrogEngine.getInitialPosition();
final double initialLogLikelihood = gradientProvider.getLikelihood().getLogLikelihood();
if (stepSizeInformation == null) {
stepSizeInformation = findReasonableStepSize(initialPosition);
final double testLogLikelihood = gradientProvider.getLikelihood().getLogLikelihood();
assert (testLogLikelihood == initialLogLikelihood);
assert (Arrays.equals(leapFrogEngine.getInitialPosition(), initialPosition));
}
double[] position = takeOneStep(getCount() + 1, initialPosition);
leapFrogEngine.setParameter(position);
return 0.0;
}
示例9: constructInterval
import dr.inference.model.Likelihood; //導入依賴的package包/類
public Interval constructInterval(Likelihood likelihood, double x0,
double cutoffDensity, double w) {
// Taken from Fig 3 in Neal (2003)
double L = x0 - w * MathUtils.nextDouble();
double R = L + w;
int J = MathUtils.nextInt(m);
int K = (m - 1) - J;
while (J > 0 && cutoffDensity < evaluate(likelihood, L) ) {
L -= w;
J--;
}
while (K > 0 && cutoffDensity < evaluate(likelihood, R) ) {
R += w;
K--;
}
return new Interval(L,R);
}
示例10: ClusterOperator
import dr.inference.model.Likelihood; //導入依賴的package包/類
public ClusterOperator(Parameter assignments, MatrixParameter virusLocations, double weight, double windowSize, NPAntigenicLikelihood Likelihood, Parameter links) {
//System.out.println("Constructor");
this.links = links;
this.assignments = assignments;
this.virusLocations = virusLocations;
this.windowSize = windowSize;
this.modelLikelihood = Likelihood;
setWeight(weight);
//load in the virusLocations
System.out.println((int)assignments.getParameterValue(0));
Parameter vLoc = virusLocations.getParameter(0);
//double d0= vLoc.getParameterValue(0);
//double d1= vLoc.getParameterValue(1);
//System.out.println( d0 + "," + d1);
//System.exit(0);
}
示例11: parseXMLObject
import dr.inference.model.Likelihood; //導入依賴的package包/類
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
ThreadedCompoundLikelihood compoundLikelihood = new ThreadedCompoundLikelihood();
for (int i = 0; i < xo.getChildCount(); i++) {
if (xo.getChild(i) instanceof Likelihood) {
compoundLikelihood.addLikelihood((Likelihood) xo.getChild(i));
} else {
Object rogueElement = xo.getChild(i);
throw new XMLParseException("An element (" + rogueElement + ") which is not a likelihood has been added to a " + THREADED_COMPOUND_LIKELIHOOD + " element");
}
}
double weight = xo.getAttribute(WEIGHT, 0.0);
if (weight < 0)
throw new XMLParseException("Robust weight must be non-negative.");
compoundLikelihood.setWeightFactor(Math.exp(-weight));
return compoundLikelihood;
}
示例12: parseXMLObject
import dr.inference.model.Likelihood; //導入依賴的package包/類
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
int iterationCount = 1000;
if (xo.hasAttribute("iterationCount")) {
iterationCount = xo.getIntegerAttribute("iterationCount");
}
List<Likelihood> likelihoods = new ArrayList<Likelihood>();
for (int i = 0; i < xo.getChildCount(); i++) {
Object xco = xo.getChild(i);
if (xco instanceof Likelihood) {
likelihoods.add((Likelihood) xco);
}
}
if (likelihoods.size() == 0) {
throw new XMLParseException("No likelihoods for benchmarking");
}
return new LikelihoodBenchmarker(likelihoods, iterationCount);
}
示例13: parseXMLObject
import dr.inference.model.Likelihood; //導入依賴的package包/類
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
int chainLength = xo.getIntegerAttribute(CHAIN_LENGTH);
OperatorSchedule opsched = null;
dr.inference.model.Likelihood likelihood = null;
ArrayList<Logger> loggers = new ArrayList<Logger>();
for (int i = 0; i < xo.getChildCount(); i++) {
Object child = xo.getChild(i);
if (child instanceof dr.inference.model.Likelihood) {
likelihood = (dr.inference.model.Likelihood)child;
} else if (child instanceof OperatorSchedule) {
opsched = (OperatorSchedule)child;
} else if (child instanceof Logger) {
loggers.add((Logger)child);
} else {
throw new XMLParseException("Unrecognized element found in optimizer element:" + child);
}
}
Logger[] loggerArray = new Logger[loggers.size()];
loggers.toArray(loggerArray);
return new MLOptimizer("optimizer1", chainLength, likelihood, opsched, loggerArray);
}
示例14: parseXMLObject
import dr.inference.model.Likelihood; //導入依賴的package包/類
@Override
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
TreeModel treeModel = (TreeModel) xo.getChild(TreeModel.class);
// if(xo.hasChildNamed(TreeModel.TREE_MODEL)) {
//
// treeModel = (TreeModel) xo.getChild(TreeModel.class);
// }
Parameter zParameter = (Parameter) xo
.getElementFirstChild(DirichletProcessPriorParser.CATEGORIES);
List<Likelihood> likelihoods = new ArrayList<Likelihood>();
XMLObject cxo = (XMLObject) xo.getChild(UNIQUE_LIKELIHOODS);
for (int i = 0; i < cxo.getChildCount(); i++) {
Likelihood likelihood = (Likelihood) cxo.getChild(i);
likelihoods.add(likelihood);
}
return null;
// new BeagleBranchLikelihood(
//// treeModel, likelihoods, zParameter
// );
}
示例15: parseXMLObject
import dr.inference.model.Likelihood; //導入依賴的package包/類
@Override
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
DirichletProcessPrior dpp = (DirichletProcessPrior) xo.getChild(DirichletProcessPrior.class);
Likelihood likelihood = (Likelihood) xo .getElementFirstChild(DATA_LOG_LIKELIHOOD);
Parameter categoriesParameter = (Parameter) xo.getElementFirstChild( DirichletProcessPriorParser.CATEGORIES);
CountableRealizationsParameter allParameters = (CountableRealizationsParameter) xo.getChild(CountableRealizationsParameter.class);
CompoundParameter uniquelyRealizedParameters = (CompoundParameter) xo.getChild(CompoundParameter.class);
int M = xo.getIntegerAttribute(MH_STEPS);
final double weight = xo.getDoubleAttribute(MCMCOperator.WEIGHT);
return new DirichletProcessOperator(dpp, //
categoriesParameter, //
uniquelyRealizedParameters, //
allParameters, //
likelihood, //
M, //
weight //
);
}