當前位置: 首頁>>代碼示例>>Java>>正文


Java Relation類代碼示例

本文整理匯總了Java中de.lmu.ifi.dbs.elki.database.relation.Relation的典型用法代碼示例。如果您正苦於以下問題:Java Relation類的具體用法?Java Relation怎麽用?Java Relation使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


Relation類屬於de.lmu.ifi.dbs.elki.database.relation包,在下文中一共展示了Relation類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: testVariance

import de.lmu.ifi.dbs.elki.database.relation.Relation; //導入依賴的package包/類
/**
 * Test cluster variance.
 */
@Test
public void testVariance() {
  Database db = makeSimpleDatabase(UNITTEST + "quality-measure-test.csv", 7);
  Relation<DoubleVector> rel = db.getRelation(TypeUtil.DOUBLE_VECTOR_FIELD);

  // Setup algorithm
  KMeansLloyd<DoubleVector> kmeans = new ELKIBuilder<KMeansLloyd<DoubleVector>>(KMeansLloyd.class) //
      .with(KMeans.K_ID, 2) //
      .with(KMeans.INIT_ID, FirstKInitialMeans.class) //
      .build();

  // run KMeans on database
  Clustering<KMeansModel> result = kmeans.run(db);

  // Test Cluster Variance
  KMeansQualityMeasure<? super DoubleVector> variance = new WithinClusterVarianceQualityMeasure();
  final NumberVectorDistanceFunction<? super DoubleVector> dist = kmeans.getDistanceFunction();

  final double quality = variance.quality(result, dist, rel);
  assertEquals("Within cluster variance incorrect", 3.16666666666, quality, 1e-10);
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:25,代碼來源:WithinClusterVarianceQualityMeasureTest.java

示例2: runDBSCAN

import de.lmu.ifi.dbs.elki.database.relation.Relation; //導入依賴的package包/類
/**
 * Run the DBSCAN algorithm
 *
 * @param relation Data relation
 * @param rangeQuery Range query class
 */
protected void runDBSCAN(Relation<O> relation, RangeQuery<O> rangeQuery) {
  final int size = relation.size();
  FiniteProgress objprog = LOG.isVerbose() ? new FiniteProgress("Processing objects", size, LOG) : null;
  IndefiniteProgress clusprog = LOG.isVerbose() ? new IndefiniteProgress("Number of clusters", LOG) : null;

  processedIDs = DBIDUtil.newHashSet(size);
  ArrayModifiableDBIDs seeds = DBIDUtil.newArray();
  for(DBIDIter iditer = relation.iterDBIDs(); iditer.valid(); iditer.advance()) {
    if(!processedIDs.contains(iditer)) {
      expandCluster(relation, rangeQuery, iditer, seeds, objprog, clusprog);
    }
    if(objprog != null && clusprog != null) {
      objprog.setProcessed(processedIDs.size(), LOG);
      clusprog.setProcessed(resultList.size(), LOG);
    }
    if(processedIDs.size() == size) {
      break;
    }
  }
  // Finish progress logging
  LOG.ensureCompleted(objprog);
  LOG.setCompleted(clusprog);
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:30,代碼來源:DBSCAN.java

示例3: buildDB

import de.lmu.ifi.dbs.elki.database.relation.Relation; //導入依賴的package包/類
/**
 * Builds a dim-1 dimensional database where the objects are projected into
 * the specified subspace.
 *
 * @param dim the dimensionality of the database
 * @param basis the basis defining the subspace
 * @param ids the ids for the new database
 * @param relation the database storing the parameterization functions
 * @return a dim-1 dimensional database where the objects are projected into
 *         the specified subspace
 */
private MaterializedRelation<ParameterizationFunction> buildDB(int dim, double[][] basis, DBIDs ids, Relation<ParameterizationFunction> relation) {
  ProxyDatabase proxy = new ProxyDatabase(ids);
  SimpleTypeInformation<ParameterizationFunction> type = new SimpleTypeInformation<>(ParameterizationFunction.class);
  WritableDataStore<ParameterizationFunction> prep = DataStoreUtil.makeStorage(ids, DataStoreFactory.HINT_HOT, ParameterizationFunction.class);

  // Project
  for(DBIDIter iter = ids.iter(); iter.valid(); iter.advance()) {
    prep.put(iter, project(basis, relation.get(iter)));
  }

  if(LOG.isDebugging()) {
    LOG.debugFine("db fuer dim " + (dim - 1) + ": " + ids.size());
  }
  MaterializedRelation<ParameterizationFunction> prel = new MaterializedRelation<>(type, ids, null, prep);
  proxy.addRelation(prel);
  return prel;
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:29,代碼來源:CASH.java

示例4: processNewResult

import de.lmu.ifi.dbs.elki.database.relation.Relation; //導入依賴的package包/類
@Override
public void processNewResult(ResultHierarchy hier, Result newResult) {
  boolean nonefound = true;
  List<Relation<?>> rels = ResultUtil.getRelations(newResult);
  for(Relation<?> rel : rels) {
    if(!TypeUtil.NUMBER_VECTOR_FIELD.isAssignableFromType(rel.getDataTypeInformation())) {
      continue;
    }
    @SuppressWarnings("unchecked")
    Relation<? extends O> vrel = (Relation<? extends O>) rel;
    ScalesResult scales = ScalesResult.getScalesResult(vrel);
    ProjectionParallel proj = new SimpleParallel(null, scales.getScales());
    PropertiesBasedStyleLibrary stylelib = new PropertiesBasedStyleLibrary();
    StylingPolicy stylepol = getStylePolicy(hier, stylelib);
    new Instance<>(vrel, proj, settings, stylepol, stylelib).run();
    nonefound = false;
  }
  if(nonefound && hier.equals(newResult)) {
    LOG.warning("3DPC did not find a number vector field relation to visualize!");
  }
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:22,代碼來源:OpenGL3DParallelCoordinates.java

示例5: updateDistances

import de.lmu.ifi.dbs.elki.database.relation.Relation; //導入依賴的package包/類
/**
 * Compute the distances of each object to all means. Update
 * {@link Meta#secondary} to point to the best cluster number except the
 * current cluster assignment
 *
 * @param relation Data relation
 * @param means Means
 * @param metas Metadata storage
 * @param df Distance function
 */
protected void updateDistances(Relation<V> relation, double[][] means, final WritableDataStore<Meta> metas, NumberVectorDistanceFunction<? super V> df) {
  for(DBIDIter id = relation.iterDBIDs(); id.valid(); id.advance()) {
    Meta c = metas.get(id);
    V fv = relation.get(id);
    // Update distances to means.
    c.secondary = -1;
    for(int i = 0; i < k; i++) {
      c.dists[i] = df.distance(fv, DoubleVector.wrap(means[i]));
      if(c.primary != i) {
        if(c.secondary < 0 || c.dists[i] < c.dists[c.secondary]) {
          c.secondary = i;
        }
      }
    }
    metas.put(id, c); // Changed.
  }
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:28,代碼來源:SameSizeKMeansAlgorithm.java

示例6: run

import de.lmu.ifi.dbs.elki.database.relation.Relation; //導入依賴的package包/類
public Result run(Database database, Relation<V> relation) {
  DistanceQuery<V> distQuery = database.getDistanceQuery(relation, getDistanceFunction());
  RangeQuery<V> rangeQuery = database.getRangeQuery(distQuery, radius);

  MeanVariance numres = new MeanVariance();

  final DBIDs ids = DBIDUtil.randomSample(relation.getDBIDs(), sampling, random);

  FiniteProgress prog = LOG.isVerbose() ? new FiniteProgress("Performing range queries", ids.size(), LOG) : null;
  for(DBIDIter iter = ids.iter(); iter.valid(); iter.advance()) {
    numres.put(rangeQuery.getRangeForDBID(iter, radius).size());
    LOG.incrementProcessed(prog);
  }
  LOG.ensureCompleted(prog);
  final String prefix = this.getClass().getName();
  LOG.statistics(new DoubleStatistic(prefix + ".mean", numres.getMean()));
  LOG.statistics(new DoubleStatistic(prefix + ".std", numres.getSampleStddev()));
  LOG.statistics(new DoubleStatistic(prefix + ".norm.mean", numres.getMean() / relation.size()));
  LOG.statistics(new DoubleStatistic(prefix + ".norm.std", numres.getSampleStddev() / relation.size()));
  LOG.statistics(new LongStatistic(prefix + ".samplesize", ids.size()));
  return null;
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:23,代碼來源:RangeQuerySelectivity.java

示例7: run

import de.lmu.ifi.dbs.elki.database.relation.Relation; //導入依賴的package包/類
/**
 * Performs the Generalized LOF_SCORE algorithm on the given database by
 * calling {@code #doRunInTime(Database)} and adds a {@link LOFKNNListener} to
 * the preprocessors.
 */
@Override
public OutlierResult run(Database database, Relation<O> relation) {
  StepProgress stepprog = LOG.isVerbose() ? new StepProgress("OnlineLOF", 3) : null;

  Pair<Pair<KNNQuery<O>, KNNQuery<O>>, Pair<RKNNQuery<O>, RKNNQuery<O>>> queries = getKNNAndRkNNQueries(database, relation, stepprog);
  KNNQuery<O> kNNRefer = queries.getFirst().getFirst();
  KNNQuery<O> kNNReach = queries.getFirst().getSecond();
  RKNNQuery<O> rkNNRefer = queries.getSecond().getFirst();
  RKNNQuery<O> rkNNReach = queries.getSecond().getSecond();

  LOFResult<O> lofResult = super.doRunInTime(relation.getDBIDs(), kNNRefer, kNNReach, stepprog);
  lofResult.setRkNNRefer(rkNNRefer);
  lofResult.setRkNNReach(rkNNReach);

  // add listener
  KNNListener l = new LOFKNNListener(lofResult);
  ((MaterializeKNNPreprocessor<O>) ((PreprocessorKNNQuery<O>) lofResult.getKNNRefer()).getPreprocessor()).addKNNListener(l);
  ((MaterializeKNNPreprocessor<O>) ((PreprocessorKNNQuery<O>) lofResult.getKNNReach()).getPreprocessor()).addKNNListener(l);

  return lofResult.getResult();
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:27,代碼來源:OnlineLOF.java

示例8: computeOutlierScores

import de.lmu.ifi.dbs.elki.database.relation.Relation; //導入依賴的package包/類
@Override
protected DoubleDataStore computeOutlierScores(Database database, Relation<O> relation, double d) {
  DistanceQuery<O> distFunc = database.getDistanceQuery(relation, getDistanceFunction());
  RangeQuery<O> rangeQuery = database.getRangeQuery(distFunc);
  final double size = distFunc.getRelation().size();

  WritableDoubleDataStore scores = DataStoreUtil.makeDoubleStorage(distFunc.getRelation().getDBIDs(), DataStoreFactory.HINT_STATIC);
  FiniteProgress prog = LOG.isVerbose() ? new FiniteProgress("DBOutlier scores", distFunc.getRelation().size(), LOG) : null;
  // TODO: use bulk when implemented.
  for(DBIDIter iditer = distFunc.getRelation().iterDBIDs(); iditer.valid(); iditer.advance()) {
    // compute percentage of neighbors in the given neighborhood with size d
    double n = rangeQuery.getRangeForDBID(iditer, d).size() / size;
    scores.putDouble(iditer, 1.0 - n);
    LOG.incrementProcessed(prog);
  }
  LOG.ensureCompleted(prog);
  return scores;
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:19,代碼來源:DBOutlierScore.java

示例9: exactMinMax

import de.lmu.ifi.dbs.elki.database.relation.Relation; //導入依賴的package包/類
/**
 * Compute the exact maximum and minimum.
 *
 * @param relation Relation to process
 * @param distFunc Distance function
 * @return Exact maximum and minimum
 */
private DoubleMinMax exactMinMax(Relation<O> relation, DistanceQuery<O> distFunc) {
  final FiniteProgress progress = LOG.isVerbose() ? new FiniteProgress("Exact fitting distance computations", relation.size(), LOG) : null;
  DoubleMinMax minmax = new DoubleMinMax();
  // find exact minimum and maximum first.
  for(DBIDIter iditer = relation.iterDBIDs(); iditer.valid(); iditer.advance()) {
    for(DBIDIter iditer2 = relation.iterDBIDs(); iditer2.valid(); iditer2.advance()) {
      // skip the point itself.
      if(DBIDUtil.equal(iditer, iditer2)) {
        continue;
      }
      double d = distFunc.distance(iditer, iditer2);
      minmax.put(d);
    }
    LOG.incrementProcessed(progress);
  }
  LOG.ensureCompleted(progress);
  return minmax;
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:26,代碼來源:DistanceStatisticsWithClasses.java

示例10: getBundle

import de.lmu.ifi.dbs.elki.database.relation.Relation; //導入依賴的package包/類
@Override
public SingleObjectBundle getBundle(DBIDRef id) {
  assert (id != null);
  // TODO: ensure that the ID actually exists in the database?
  try {
    // Build an object package
    SingleObjectBundle ret = new SingleObjectBundle();
    for(Relation<?> relation : relations) {
      ret.append(relation.getDataTypeInformation(), relation.get(id));
    }
    return ret;
  }
  catch(RuntimeException e) {
    if(id == null) {
      throw new UnsupportedOperationException("AbstractDatabase.getPackage(null) called!");
    }
    // throw e upwards.
    throw e;
  }
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:21,代碼來源:AbstractDatabase.java

示例11: projectedEnergy

import de.lmu.ifi.dbs.elki.database.relation.Relation; //導入依賴的package包/類
/**
 * Computes the projected energy of the specified clusters. The projected
 * energy is given by the mean square distance of the points to the centroid
 * of the union cluster c, when all points in c are projected to the subspace
 * of c.
 * 
 * @param relation the relation holding the objects
 * @param c_i the first cluster
 * @param c_j the second cluster
 * @param i the index of cluster c_i in the cluster list
 * @param j the index of cluster c_j in the cluster list
 * @param dim the dimensionality of the clusters
 * @return the projected energy of the specified cluster
 */
private ProjectedEnergy projectedEnergy(Relation<V> relation, ORCLUSCluster c_i, ORCLUSCluster c_j, int i, int j, int dim) {
  NumberVectorDistanceFunction<? super V> distFunc = SquaredEuclideanDistanceFunction.STATIC;
  // union of cluster c_i and c_j
  ORCLUSCluster c_ij = union(relation, c_i, c_j, dim);

  double sum = 0.;
  NumberVector c_proj = DoubleVector.wrap(project(c_ij, c_ij.centroid));
  for(DBIDIter iter = c_ij.objectIDs.iter(); iter.valid(); iter.advance()) {
    NumberVector o_proj = DoubleVector.wrap(project(c_ij, relation.get(iter).toArray()));
    sum += distFunc.distance(o_proj, c_proj);
  }
  sum /= c_ij.objectIDs.size();

  return new ProjectedEnergy(i, j, c_ij, sum);
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:30,代碼來源:ORCLUS.java

示例12: evaluateClusters

import de.lmu.ifi.dbs.elki.database.relation.Relation; //導入依賴的package包/類
/**
 * Evaluates the quality of the clusters.
 *
 * @param clusters the clusters to be evaluated
 * @param dimensions the dimensions associated with each cluster
 * @param database the database holding the objects
 * @return a measure for the cluster quality
 */
private double evaluateClusters(ArrayList<PROCLUSCluster> clusters, long[][] dimensions, Relation<V> database) {
  double result = 0;
  for(int i = 0; i < dimensions.length; i++) {
    PROCLUSCluster c_i = clusters.get(i);
    double[] centroid_i = c_i.centroid;

    long[] dims_i = dimensions[i];
    double w_i = 0;
    for(int d = BitsUtil.nextSetBit(dims_i, 0); d >= 0; d = BitsUtil.nextSetBit(dims_i, d + 1)) {
      w_i += avgDistance(centroid_i, c_i.objectIDs, database, d);
    }

    w_i /= dimensions.length;
    result += c_i.objectIDs.size() * w_i;
  }

  return result / database.size();
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:27,代碼來源:PROCLUS.java

示例13: computeNeighborhoods

import de.lmu.ifi.dbs.elki.database.relation.Relation; //導入依賴的package包/類
/**
 * Compute neighborhoods
 *
 * @param relation
 * @param knnQuery
 * @param pruned
 * @param knns
 * @param rnns
 * @param density
 */
protected void computeNeighborhoods(Relation<O> relation, KNNQuery<O> knnQuery, ModifiableDBIDs pruned, WritableDataStore<ModifiableDBIDs> knns, WritableDataStore<ModifiableDBIDs> rnns, WritableDoubleDataStore density) {
  for(DBIDIter iter = relation.iterDBIDs(); iter.valid(); iter.advance()) {
    // if not visited count=0
    int count = rnns.get(iter).size();
    DBIDs knn = getKNN(iter, knnQuery, knns, density);
    for(DBIDIter niter = knn.iter(); niter.valid(); niter.advance()) {
      // Ignore the query point itself.
      if(DBIDUtil.equal(iter, niter)) {
        continue;
      }
      if(getKNN(niter, knnQuery, knns, density).contains(iter)) {
        rnns.get(niter).add(iter);
        rnns.get(iter).add(niter);
        count++;
      }
    }
    if(count >= knn.size() * m) {
      pruned.add(iter);
    }
  }
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:32,代碼來源:INFLO.java

示例14: newContext

import de.lmu.ifi.dbs.elki.database.relation.Relation; //導入依賴的package包/類
/**
 * Make a new visualization context
 *
 * @param hier Result hierarchy
 * @param start Starting result
 * @return New context
 */
public VisualizerContext newContext(ResultHierarchy hier, Result start) {
  Collection<Relation<?>> rels = ResultUtil.filterResults(hier, Relation.class);
  for(Relation<?> rel : rels) {
    if(samplesize == 0) {
      continue;
    }
    if(!ResultUtil.filterResults(hier, rel, SamplingResult.class).isEmpty()) {
      continue;
    }
    if(rel.size() > samplesize) {
      SamplingResult sample = new SamplingResult(rel);
      sample.setSample(DBIDUtil.randomSample(sample.getSample(), samplesize, rnd));
      ResultUtil.addChildResult(rel, sample);
    }
  }
  return new VisualizerContext(hier, start, stylelib, factories);
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:25,代碼來源:VisualizerParameterizer.java

示例15: run

import de.lmu.ifi.dbs.elki.database.relation.Relation; //導入依賴的package包/類
/**
 * Run CASH on the relation.
 *
 * @param database Database
 * @param vrel Relation
 * @return Clustering result
 */
public Clustering<Model> run(Database database, Relation<V> vrel) {
  fulldatabase = preprocess(database, vrel);
  processedIDs = DBIDUtil.newHashSet(fulldatabase.size());
  noiseDim = dimensionality(fulldatabase);

  FiniteProgress progress = LOG.isVerbose() ? new FiniteProgress("CASH Clustering", fulldatabase.size(), LOG) : null;
  Clustering<Model> result = doRun(fulldatabase, progress);
  LOG.ensureCompleted(progress);

  if(LOG.isVerbose()) {
    StringBuilder msg = new StringBuilder(1000);
    for(Cluster<Model> c : result.getAllClusters()) {
      if(c.getModel() instanceof LinearEquationModel) {
        LinearEquationModel s = (LinearEquationModel) c.getModel();
        msg.append("\n Cluster: Dim: " + s.getLes().subspacedim() + " size: " + c.size());
      }
      else {
        msg.append("\n Cluster: " + c.getModel().getClass().getName() + " size: " + c.size());
      }
    }
    LOG.verbose(msg.toString());
  }
  return result;
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:32,代碼來源:CASH.java


注:本文中的de.lmu.ifi.dbs.elki.database.relation.Relation類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。